基于布伦特迭代算法的构网型变流器频率支撑需求动态评估

杨凯璇, 王学斌, 宋锐, 索心语, 傅国斌, 王澧森, 文云峰

电力建设 ›› 2026, Vol. 47 ›› Issue (1) : 25-36.

PDF(2257 KB)
PDF(2257 KB)
电力建设 ›› 2026, Vol. 47 ›› Issue (1) : 25-36. DOI: 10.12204/j.issn.1000-7229.2026.01.003
高比例新能源电力系统下的构网型装备关键技术·栏目主持:肖峻、李超、刘春晓、宋晨辉·

基于布伦特迭代算法的构网型变流器频率支撑需求动态评估

作者信息 +

Dynamic Evaluation of Frequency Support Requirements for Grid-Forming Converters Based on the Brent Iteration Algorithm

Author information +
文章历史 +

摘要

【目的】为提升变流器高占比系统频率稳定性,探讨了构网型(grid-forming,GFM)变流器频率支撑需求的动态评估与量化方法。【方法】首先,建立耦合GFM变流器功-频特性的多机系统频率响应模型;其次,综合考虑预想扰动下频率变化速率(rate of change of frequency,RoCoF)与最大暂态频率偏差双重约束条件,构建了GFM变流器频率支撑需求评估方法;最后,基于布伦特迭代算法实现不同运行工况下GFM变流器虚拟惯量与一次调频增益临界阈值的动态评估。基于改进的IEEE-39节点系统,开展了多场景算例测试。【结果】结果表明,GFM变流器的引入可将频率最低点提高至49.5 Hz,显著提升系统稳定性,证明了高比例电力电子化系统中配置GFM变流器的必要性。进一步对比3种算法性能,所提迭代方法平均迭代次数仅为11次,较传统方法减少20%以上,验证了所提评估方法和迭代算法的有效性。【结论】所提评估方法从系统层面明确了电网对GFM变流器频率支撑能力的需求,可为GFM变流器的优化配置与参数整定提供理论基础。

Abstract

[Objective] To enhance frequency stability in systems with a high penetration of converters,this paper investigates a dynamic evaluation and quantification method for determining the frequency support requirements of grid-forming(GFM)converters. [Methods] First,a multi-machine system frequency response model is developed by incorporating the power-frequency characteristics of coupled GFM converters. Second,considering both the rate of change of frequency(RoCoF)and the maximum transient frequency deviation under anticipated disturbances,a comprehensive assessment method is constructed to evaluate the frequency support requirements of GFM converters. Finally,based on the Brent iterative algorithm,the critical thresholds of virtual inertia and primary frequency regulation gain for GFM converters are dynamically assessed under various operating conditions. Based on the modified IEEE-39 bus system,multiple scenario-based case studies were conducted. [Conclusions] The results show that the introduction of GFM converters can raise the minimum system frequency to 49.5 Hz,significantly enhancing system stability and highlighting the necessity of deploying GFM converters in highly power-electronic systems. Furthermore,a performance comparison of three algorithms demonstrates that the proposed iterative method requires only 11 iterations on average,reducing the iteration count by over 20% compared to traditional approaches,thereby validating the effectiveness of the proposed assessment method and iterative algorithm. [Conclusions] The proposed assessment method clarifies,from a system-level perspective,the frequency support requirements imposed by the grid on GFM converters,providing a theoretical foundation for their optimal allocation and parameter tuning.

关键词

构网型 / 变流器 / 频率支撑 / 需求评估 / 布伦特迭代算法

Key words

grid-forming / converter / frequency support / requirement evaluation / Brent iterative algorithm

引用本文

导出引用
杨凯璇, 王学斌, 宋锐, . 基于布伦特迭代算法的构网型变流器频率支撑需求动态评估[J]. 电力建设. 2026, 47(1): 25-36 https://doi.org/10.12204/j.issn.1000-7229.2026.01.003
YANG Kaixuan, WANG Xuebin, SONG Rui, et al. Dynamic Evaluation of Frequency Support Requirements for Grid-Forming Converters Based on the Brent Iteration Algorithm[J]. Electric Power Construction. 2026, 47(1): 25-36 https://doi.org/10.12204/j.issn.1000-7229.2026.01.003
中图分类号: TM46   

参考文献

[1]
刘翔宇, 李晓明, 朱介北, 等. 新型电力系统的频率响应模型综述及展望[J]. 南方电网技术, 2022, 16(10): 38-47.
LIU Xiangyu, LI Xiaoming, ZHU Jiebei, et al. Review and prospect on frequency response models of new power system[J]. Southern Power System Technology, 2022, 16(10): 38-47.
[2]
雷歆蕊, 赵坤. 构网型储能如何成就青海“好风光”?[N]. 中国电力报, 2025-04-18(001).
[3]
林涛, 林政阳, 李晨, 等. 基于TCN的跟网/构网混合型新能源场站并网系统小干扰稳定性快速评估[J]. 电力科学与技术学报, 2024, 39(4): 169-177.
LIN Tao, LIN Zhengyang, LI Chen, et al. Small signal stability assessment of grid-connected system for grid-following/grid-forming hybrid new energy stations based on TCN[J]. Journal of Electric Power Science and Technology, 2024, 39(4): 169-177.
[4]
鲁宗相, 李佳明, 乔颖, 等. 新能源场站快速频率支撑能力评估研究现状与技术展望[J]. 电力系统自动化, 2024, 48(10): 1-19.
LU Zongxiang, LI Jiaming, QIAO Ying, et al. Research status and technology prospects of fast frequency support capability assessment for renewable energy stations[J]. Automation of Electric Power Systems, 2024, 48(10): 1-19.
[5]
金楚, 李作红, 林勇, 等. 考虑频率安全及风能转移的风电场规划与运行[J]. 电力建设, 2025, 46(3): 155-165.
JIN Chu, LI Zuohong, LIN Yong, et al. Planning and operation of wind farms considering frequency safety and wind energy transfer[J]. Electric Power Construction, 2025, 46(3): 155-165.
[6]
胡宇飞, 田震, 查晓明, 等. 构网型与跟网型变流器主导孤岛微网阻抗稳定性分析及提升策略[J]. 电力系统自动化, 2022, 46(24): 121-131.
HU Yufei, TIAN Zhen, ZHA Xiaoming, et al. Impedance stability analysis and promotion strategy of islanded microgrid dominated by grid-connected and grid-following converters[J]. Automation of Electric Power Systems, 2022, 46(24): 121-131.
[7]
李翼翔, 田震, 唐英杰, 等. 考虑构网型与跟网型逆变器交互的孤岛微电网小信号稳定性分析[J]. 电力自动化设备, 2022, 42(8): 11-18.
LI Yixiang, TIAN Zhen, TANG Yingjie, et al. Small-signal stability analysis of island microgrid considering interaction between grid-forming converter and grid-following converter[J]. Electric Power Automation Equipment, 2022, 42(8): 11-18.
[8]
孙华东, 许涛, 郭强, 等. 英国“8·9” 大停电事故分析及对中国电网的启示[J]. 中国电机工程学报, 2019, 39(21): 6183-6192.
SUN Huadong, XU Tao, GUO Qiang, et al. Analysis on blackout in Great Britain power grid on August 9th, 2019 and its enlightenment to power grid in China[J]. Proceedings of the CSEE, 2019, 39(21): 6183-6192.
[9]
鲁宗相, 汤海雁, 乔颖, 等. 电力电子接口对电力系统频率控制的影响综述[J]. 中国电力, 2018, 51(1): 51-58.
LU Zongxiang, TANG Haiyan, QIAO Ying, et al. The impact of power electronics interfaces on power system frequency control: a review[J]. Electric Power, 2018, 51(1): 51-58.
[10]
刘延龙, 陈晓光, 姚爽爽, 等. 基于构网型SVG控制优化的双馈风场高频谐振抑制分析[J]. 电力建设, 2024, 45(11): 125-136.
LIU Yanlong, CHEN Xiaoguang, YAO Shuangshuang, et al. Analysis of high-frequency resonance suppression in doubly-fed wind farms based on grid-forming SVG control optimization[J]. Electric Power Construction, 2024, 45(11): 125-136.
[11]
张斌, 张学广, 徐殿国. 构网型与跟网型变流器混联并网系统配比关键影响因素分析[J]. 电力系统自动化, 2025, 49(1): 47-58.
ZHANG Bin, ZHANG Xueguang, XU Dianguo. Analysis on key influence factors of ratio of grid-forming and grid-following converters in hybrid parallel grid-connected system[J]. Automation of Electric Power Systems, 2025, 49(1): 47-58.
[12]
郑云平, 焦春雷, 亚夏尔·吐尔洪, 等. 基于新能源发电的构网型协调储能控制策略研究[J]. 高压电器, 2023, 59(7): 65-74.
ZHENG Yunping, JIAO Chunlei, YAXAR·Turgun, et al. Research on grid-forming coordinated energy storage control strategy based on converter-interfaced generation[J]. High Voltage Apparatus, 2023, 59(7): 65-74.
[13]
阮亮, 王杨, 肖先勇, 等. 跟网型和构网型变流器动态交互特性分析[J]. 智慧电力, 2024, 52(7): 103-110.
RUAN Liang, WANG Yang, XIAO Xianyong, et al. Dynamic interaction control characteristic analysis of gridfollowing and grid-forming inverters[J]. Smart Power, 2024, 52(7): 103-110.
[14]
魏澈, 苏开元, 邱银锋, 等. 风电为主体的海上油田群电力系统构网方式初探[J]. 电网与清洁能源, 2025, 41(2): 147-154.
WEI Che, SU Kaiyuan, QIU Yinfeng, et al. Preliminary exploration of grid-forming strategies for wind power-dominant new-type offshore oilfield power systems[J]. Power System and Clean Energy, 2025, 41(2): 147-154.
[15]
马子涵, 黄萌, 付熙坤, 等. 构网型电源接入下新能源场站的稳定运行能力评估[J]. 电力系统自动化, 2025, 49(1): 38-46.
MA Zihan, HUANG Meng, FU Xikun, et al. Stable operation capability evaluation for renewable energy station with grid-forming power sources[J]. Automation of Electric Power Systems, 2025, 49(1): 38-46.
[16]
胡同宇, 杨德健, 钱敏慧, 等. 基于惯量同步的构网型永磁直驱风电机组频率支撑及转速恢复策略[J]. 智慧电力, 2024, 52(7): 72-79.
HU Tongyu, YANG Dejian, QIAN Minhui, et al. Frequency support and speed recovery strategy of grid-forming PMSGs based on inertia synchronization[J]. Smart Power, 2024, 52(7): 72-79.
[17]
符杨, 陈禹瑾, 季亮, 等. 考虑功率解耦的构网型逆变器的低电压穿越控制策略[J]. 电力系统保护与控制, 2024, 52(15): 1-13.
FU Yang, CHEN Yujin, JI Liang, et al. Low voltage ride-through control strategy of a grid-forming inverter considering power decoupling[J]. Power System Protection and Control, 2024, 52(15): 1-13.
[18]
CHEN Y R, ZHANG X P, YAN S H. Frequency stability analysis of grid-forming control in voltage source converters[J]. IEEE Access, 2024, 12: 197816-197826.
[19]
汪梦军, 郭剑波, 马士聪, 等. 新能源电力系统暂态频率稳定分析与调频控制方法综述[J]. 中国电机工程学报, 2023, 43(5): 1672-1694.
WANG Mengjun, GUO Jianbo, MA Shicong, et al. Review of transient frequency stability analysis and frequency regulation control methods for renewable power systems[J]. Proceedings of the CSEE, 2023, 43(5): 1672-1694.
[20]
辛焕海, 王宇轩, 刘晨曦, 等. 提高新能源场站稳定性的构网型与跟网型变流器容量配比估算[J]. 中国电机工程学报, 2024, 44(14): 5463-5473.
XIN Huanhai, WANG Yuxuan, LIU Chenxi, et al. Estimation of capacity ratios between grid-forming and grid-following converters for improving the stability of renewable energy stations[J]. Proceedings of the CSEE, 2024, 44(14): 5463-5473.
[21]
XIN H H, LIU C X, CHEN X, et al. How many grid-forming converters do we need?A perspective from small signal stability and power grid strength[J]. IEEE Transactions on Power Systems, 2025, 40(1): 623-635.
[22]
宋璐瑶, 陈俊儒, 程静, 等. 构网型新能源场站环流产生机理研究[J]. 智慧电力, 2024, 52(3): 8-16.
SONG Luyao, CHEN Junru, CHENG Jing, et al. Mechanism of generating circulating current in grid-forming renewable energy power plant[J]. Smart Power, 2024, 52(3): 8-16.
[23]
张建坡, 柴欣茹, 辛光明, 等. 换相失败场景下构网型风机对送端暂态过电压影响因素分析及抑制策略研究[J]. 智慧电力, 2024, 52(9): 1-8, 17.
ZHANG Jianpo, CHAI Xinru, XIN Guangming, et al. Influencing factors of GFM-PMSG on sending-end transient overvoltage under commutation failure & its suppression strategies[J]. Smart Power, 2024, 52(9): 1-8, 17.
[24]
ROSSO R, WANG X F, LISERRE M, et al. Grid-forming converters: control approaches, grid-synchronization, and future trends: a review[J]. IEEE Open Journal of Industry Applications, 2021, 2: 93-109.
[25]
杨振奥, 陈俊儒, 刘雨姗, 等. 基于博弈论和改进TOPSIS的跟网型和构网型场站并网性能对比及评估[J]. 电力科学与技术学报, 2025, 40(2): 206-216.
YANG Zhen’ao, CHEN Junru, LIU Yushan, et al. Comparison and evaluation of grid-connected performance of grid-following and grid-forming stations based on game theory and improved TOPSIS[J]. Journal of Electric Power Science and Technology, 2025, 40(2): 206-216.
[26]
李建林, 卢冠铭, 游洪灏, 等. 基于改进LADRC的构网型储能调频控制策略研究[J]. 电力系统保护与控制, 2024, 52(15): 142-154.
LI Jianlin, LU Guanming, YOU Honghao, et al. Frequency regulation control strategy for grid-forming energy storage based on improved LADRC[J]. Power System Protection and Control, 2024, 52(15): 142-154.
[27]
江叶峰, 夏宇翔, 施琳, 等. 基于频率空间特性和灵敏度分析的惯量配置方法[J]. 电力自动化设备, 2025, 45(5): 209-217.
JIANG Yefeng, XIA Yuxiang, SHI Lin, et al. Inertia allocation method based on spatial frequency characteristic and sensitivity analysis[J]. Electric Power Automation Equipment, 2025, 45(5): 209-217.
[28]
马宁嘉, 谢小荣, 李浩志, 等. 计及频率动态分布性的新能源机组惯量需求分析[J]. 中国电机工程学报, 2024, 44(9): 3500-3508.
MA Ningjia, XIE Xiaorong, LI Haozhi, et al. Inertial requirements for renewable energy units considering the space-time distribution characteristics of frequency[J]. Proceedings of the CSEE, 2024, 44(9): 3500-3508.
[29]
张祥宇, 邵孜建, 付媛. 风储并网发电系统的虚拟多段协同调速与频率安全支撑技术[J]. 电工技术学报, 2025, 40(15): 4677-4693.
ZHANG Xiangyu, SHAO Zijian, FU Yuan. Virtual multi-stage coordinated speed regulation and frequency safety support technology of wind-storage grid-connected power generation system[J]. Transactions of China Electrotechnical Society, 2025, 40(15): 4677-4693.
[30]
赵正晖, 王夏楠, 齐步洋, 等. 基于主从博弈的新型电力系统惯量需求优化调度策略[J]. 电力系统自动化, 2025, 49(7): 179-188.
ZHAO Zhenghui, WANG Xianan, QI Buyang, et al. Optimal scheduling strategy for inertial demand of new power system based on Stackelberg game[J]. Automation of Electric Power Systems, 2025, 49(7): 179-188.
[31]
王祺, 余鹏, 郭建伟, 等. 风机参与系统一次调频虚拟惯量优化控制[J]. 中国电机工程学报, 2025, 45(16): 6368-6380.
WANG Qi, YU Peng, GUO Jianwei, et al. Virtual inertia optimization control of the system’s primary frequency modulation with wind turbine participation[J]. Proceedings of the CSEE, 2025, 45(16): 6368-6380.
[32]
李建林, 丁子洋, 游洪灏, 等. 构网型储能支撑新型电力系统稳定运行研究[J]. 高压电器, 2023, 59(7): 1-11.
LI Jianlin, DING Ziyang, YOU Honghao, et al. Research on stable operation of new power system supported by grid-forming energy storage system[J]. High Voltage Apparatus, 2023, 59(7): 1-11.
[33]
杨可昕, 鲍颜红, 任先成, 等. 直接电压控制构网型变流器控制参数暂态稳定影响分析[J]. 电力系统保护与控制, 2024, 52(8): 20-30.
YANG Kexin, BAO Yanhong, REN Xiancheng, et al. Analysis of transient stability effects of control parameters for direct voltage control grid-forming converters[J]. Power System Protection and Control, 2024, 52(8): 20-30.
[34]
李玉京, 胡鹏飞, 曹宇, 等. 计及频率响应延时的构网型变流器惯量参数数据驱动估计方法[J]. 电力系统自动化, 2024, 48(19): 80-88.
LI Yujing, HU Pengfei, CAO Yu, et al. Data-driven estimation method for inertia parameters of grid-forming converter considering frequency response delay[J]. Automation of Electric Power Systems, 2024, 48(19): 80-88.
[35]
刘珏麟, 余娟, 杨知方, 等. 面向电力系统概率稳定性提升的风电虚拟惯量参数优化方法[J]. 中国电机工程学报, 2023, 43(17): 6602-6614.
LIU Juelin, YU Juan, YANG Zhifang, et al. Virtual inertia parameter optimization method for power system probabilistic stability improvement[J]. Proceedings of the CSEE, 2023, 43(17): 6602-6614.
[36]
王亚军, 杨立波, 马斌, 等. 虚拟同步机惯量及阻尼系数协调优化方法[J]. 电力系统保护与控制, 2022, 50(19): 88-98.
WANG Yajun, YANG Libo, MA Bin, et al. Coordination and optimization strategy of virtual inertia and damping coefficient of a virtual synchronous generator[J]. Power System Protection and Control, 2022, 50(19): 88-98.
[37]
李立, 王佳明, 张青蕾, 等. 兼顾系统频率稳定性和小干扰稳定性的构网型储能参数优化方法[J]. 电力建设, 2023, 44(12): 125-135.
摘要
为了应对新能源惯量不足的问题,构网型储能中的虚拟同步机控制技术得到了不断发展,而其为系统提供了惯量支撑的同时也会引发系统的功率振荡,降低系统的功角稳定性。针对此问题,文章阐释了虚拟同步机惯量、阻尼参数对系统稳定性的影响机理,并提出了虚拟同步机的参数优化策略。该策略同时考虑系统的频率稳定性与小干扰稳定性,建立目标函数优化模型,以最大频率偏差最小与系统振荡模式的阻尼比之和最大为目标函数,将各控制参数的稳定区间作为约束条件,并运用带有精英策略的快速非支配排序遗传算法(nondominated sorting genetic algorithm II,NSGA-Ⅱ)求解。最后,通过仿真验证了此方法的有效性。
LI Li, WANG Jiaming, ZHANG Qinglei, et al. Parameter optimization method of grid-forming energy storage considering system frequency stability and small signal stability[J]. Electric Power Construction, 2023, 44(12): 125-135.
To deal with the problem of insufficient inertia of new energy, the control technology of virtual synchronous generators (VSG) in grid-forming energy storage has been continuously developed, which provides inertia support for the system while causing power oscillation and reducing the power angle stability of the system. To solve this problem, the mechanism of the influence of the virtual inertia and virtual damping parameters of the virtual synchronous generator on the system stability is explained, and a parameter optimization strategy is proposed for the virtual synchronous generator. This strategy simultaneously considers the frequency stability and small-signal stability of the system to establish an objective function optimization model. The objective function minimizes the maximum frequency deviation and the maximum sum of the damping ratio of the system oscillation mode. The stability interval of each control parameter is considered the constraint condition. The strategy was solved using a fast non-dominated sequencing genetic algorithm (NSGA-II) with an elite strategy. Finally, the effectiveness of this method is verified through a simulation.
[38]
刘彦军, 何维, 朱东海, 等. 基于二阶VSG的变换器频率支撑能力评估及提升方法[J]. 电力建设, 2024, 45(11): 102-113.
LIU Yanjun, HE Wei, ZHU Donghai, et al. Evaluation and improving method of frequency support of converters based on second-order VSG section[J]. Electric Power Construction, 2024, 45(11): 102-113.
[39]
张娜, 赵琳, 郭力滔, 等. 面向频率响应容量规划的快速随机生产模拟算法[J]. 现代电力, 2023, 40(3): 352-362.
ZHANG Na, ZHAO Lin, GUO Litao, et al. Research on fast probabilistic production simulation algorithm for frequency response capacity planning[J]. Modern Electric Power, 2023, 40(3): 352-362.
[40]
刘瑞平, 袁亮, 胡铭欣, 等. 含构网型新能源发电单元的孤立电网暂态稳定性提升策略[J]. 电力科学与技术学报, 2024, 39(6): 152-161.
LIU Ruiping, YUAN Liang, HU Mingxin, et al. A transient stability improvement strategy of isolated power grids with grid-forming-based renewable energy power generation units[J]. Journal of Electric Power Science and Technology, 2024, 39(6): 152-161.
[41]
王凤, 许建中. 基于构网储能型SVG的自适应限流策略[J]. 电力系统保护与控制, 2024, 52(23): 54-64.
WANG Feng, XU Jianzhong. Adaptive current limiting strategy based on grid-forming and energy-storage SVG[J]. Power System Protection and Control, 2024, 52(23): 54-64.
[42]
刘洋, 林英明, 余达, 等. 构网型虚拟同步化光储并网系统的频率支撑策略[J]. 电源学报, 2025, 23(3): 152-161.
LIU Yang, LIN Yingming, YU Da, et al. Frequency support strategy for grid-forming virtual synchronization PV-storage grid-connected system[J]. Journal of Power Supply, 2025, 23(3): 152-161.
[43]
CHAN M L, DUNLOP R D, SCHWEPPE F. Dynamic equivalents for average system frequency behavior following major distribances[J]. IEEE Transactions on Power Apparatus and Systems, 1972, PAS-91(4): 1637-1642.
[44]
董玮, 施志明, 张晓琳, 等. 计及新能源场站调频时延的电力系统频率响应模型及应用[J]. 中国电机工程学报, 2025, 45(12): 4657-4669.
DONG Wei, SHI Zhiming, ZHANG Xiaolin, et al. Frequency response model and application of power system considering the frequency regulation delay of renewable energy station[J]. Proceedings of the CSEE, 2025, 45(12): 4657-4669.
[45]
BURDEN R L, FAIRES J D. Numerical analysis[M]. Boston: Brooks/Cole, 2015: 76-78.
[46]
ZHANG X, VITTAL V. Design of inertia emulation controller for wind turbine generators based on adaptive model reference control[J]. IEEE Transactions on Sustainable Energy, 2018, 9(1): 256-266.
[47]
刘洋, 邵广惠, 张弘鹏, 等. 新能源参与系统一次调频分析及参数设置[J]. 电网技术, 2020, 44(2): 683-689.
LIU Yang, SHAO Guanghui, ZHANG Hongpeng, et al. Analysis of renewable energy participation in primary frequency regulation and parameter setting scheme of power grid[J]. Power System Technology, 2020, 44(2): 683-689.
[48]
张剑云, 李明节. 新能源高渗透的电力系统频率特性分析[J]. 中国电机工程学报, 2020, 40(11): 3498-3507.
ZHANG Jianyun, LI Mingjie. Analysis of the frequency characteristic of the power systems highly penetrated by new energy generation[J]. Proceedings of the CSEE, 2020, 40(11): 3498-3507.

基金

国家自然科学基金项目(52077066)
国网青海省电力公司科技项目(522807240005)

编辑: 张小飞
PDF(2257 KB)

Accesses

Citation

Detail

段落导航
相关文章
AI小编
你好!我是《电力建设》AI小编,有什么可以帮您的吗?

/