基于功率指令约束的构网型逆变器故障穿越策略

刘一琦, 赵博, 兰昊, 张恒科, 王泽阳, 吴昱澄

电力建设 ›› 2026, Vol. 47 ›› Issue (1) : 37-48.

PDF(8578 KB)
PDF(8578 KB)
电力建设 ›› 2026, Vol. 47 ›› Issue (1) : 37-48. DOI: 10.12204/j.issn.1000-7229.2026.01.004
高比例新能源电力系统下的构网型装备关键技术·栏目主持:肖峻、李超、刘春晓、宋晨辉·

基于功率指令约束的构网型逆变器故障穿越策略

作者信息 +

Fault Ride-Through Strategy for GFM Inverters Based on Power Command Constraints

Author information +
文章历史 +

摘要

【目的】针对电网发生对称故障期间构网型逆变器出现的功角失稳和输出电流过载问题,提出一种基于功率指令约束的故障穿越策略。【方法】首先,建立基于下垂控制的构网型逆变器暂态模型,分析系统在电网电压跌落下的暂态特征,揭示功率指令对暂态稳定性的影响;其次,分析逆变器与电网之间的电路关系,辨识故障电流特征及其主要影响因素;最后,提出一种基于有功指令约束的故障穿越方法,该方法可重塑功角稳定性并限制故障电流。【结果】MATLAB/Simulink仿真结果证明了所提策略能有效提升功角稳定性,实现故障穿越。【结论】提出的基于功率指令约束的故障穿越策略仅需约束有功指令便能有效解决构网型逆变器在电网电压跌落期间的功角失稳和过电流问题,为提高可再生能源并网系统的故障穿越能力提供了可行方案。

Abstract

[Objective] To address the issues of power angle instability and output current overload in grid-forming(GFM)inverter during symmetrical grid faults,this paper proposes a fault ride-through strategy based on power command constraints. [Methods] First,a transient model of a droop-controlled GFM inverter is established to analyze the transient characteristics of the system under grid voltage sag conditions,revealing the impact of power commands on transient stability. Second,based on the circuit relationship between the inverter and the grid,the characteristics of fault currents and their primary influencing factors are identified. Finally,a fault ride-through method based on active power command constraints is proposed,which only requires calculating and setting the active power command value to restore power angle stability and limit fault currents. [Conclusions] Simulations performed in MATLAB/Simulink demonstrate that the proposed strategy effectively enhances power angle stability,achieving fault ride-through. [Conclusions] The proposed fault ride-through strategy based on power command constraints effectively addresses power angle instability and overcurrent issues in GFM inverters during voltage sag by constraining active power commands,providing a feasible solution for enhancing the fault ride-through capability of renewable energy grid-connected systems.

关键词

构网型逆变器 / 电网电压跌落 / 下垂控制 / 故障穿越 / 功率指令约束

Key words

grid-forming inverter / grid voltage sag / droop control / fault ride-through / power command constraints

引用本文

导出引用
刘一琦, 赵博, 兰昊, . 基于功率指令约束的构网型逆变器故障穿越策略[J]. 电力建设. 2026, 47(1): 37-48 https://doi.org/10.12204/j.issn.1000-7229.2026.01.004
LIU Yiqi, ZHAO Bo, LAN Hao, et al. Fault Ride-Through Strategy for GFM Inverters Based on Power Command Constraints[J]. Electric Power Construction. 2026, 47(1): 37-48 https://doi.org/10.12204/j.issn.1000-7229.2026.01.004
中图分类号: TM77   

参考文献

[1]
马堰泓, 付立军, 胡祺, 等. 计及暂态模式切换下垂控制逆变器故障下同步稳定分析[J]. 电机与控制学报, 2022, 26(10): 1-11.
MA Yanhong, FU Lijun, HU Qi, et al. Synchronous stability analysis of droop controlled inverter considering transient mode switching under fault[J]. Electric Machines and Control, 2022, 26(10): 1-11.
[2]
LIU Y Q, ZHANG H K, WU Y C, et al. A grid-forming energy storage damping strategy based on bidirectional proportional regulation[J]. International Journal of Electrical Power & Energy Systems, 2025, 165: 110450.
[3]
符杨, 陈禹瑾, 季亮, 等. 考虑功率解耦的构网型逆变器的低电压穿越控制策略[J]. 电力系统保护与控制, 2024, 52(15): 1-13.
FU Yang, CHEN Yujin, JI Liang, et al. Low voltage ride-through control strategy of a grid-forming inverter considering power decoupling[J]. Power System Protection and Control, 2024, 52(15): 1-13.
[4]
何佐仁, 黄云辉, 王栋, 等. 基于虚拟母线电压控制的跟网型与构网型并联系统稳定性优化[J]. 智慧电力, 2025, 53(6): 19-27.
HE Zuoren, HUANG Yunhui, WANG Dong, et al. Stability optimization of grid-following and grid-forming converter parallel systems based on virtual bus voltage control[J]. Smart Power, 2025, 53(6): 19-27.
[5]
纪昊含, 张扬帆, 陈磊, 等. 跟网型与构网型变流器混合系统中扰动功率的分阶段分配[J]. 电力自动化设备, 2025, 45(7): 129-137.
JI Haohan, ZHANG Yangfan, CHEN Lei, et al. Staged allocation of disturbance power in hybrid system of grid-following converters and grid-forming converters[J]. Electric Power Automation Equipment, 2025, 45(7): 129-137.
[6]
TAUL M G, WANG X F, DAVARI P, et al. An overview of assessment methods for synchronization stability of grid-connected converters under severe symmetrical grid faults[J]. IEEE Transactions on Power Electronics, 2019, 34(10): 9655-9670.
[7]
杨振奥, 陈俊儒, 刘雨姗, 等. 基于博弈论和改进TOPSIS的跟网型和构网型场站并网性能对比及评估[J]. 电力科学与技术学报, 2025, 40(2): 206-216.
YANG Zhen’ao, CHEN Junru, LIU Yushan, et al. Comparison and evaluation of grid-connected performance of grid-following and grid-forming stations based on game theory and improved TOPSIS[J]. Journal of Electric Power Science and Technology, 2025, 40(2): 206-216.
[8]
LIU Y Q, LIU J Y, WU Y C, et al. Digital differentiator-based passivity enhancement scheme for high-frequency resonance suppression in MMC-HVDC system[J]. Applied Energy, 2024, 373: 123945.
[9]
刘辉, 于思奇, 孙大卫, 等. 构网型变流器控制技术及原理综述[J]. 中国电机工程学报, 2025, 45(1): 277-297.
LIU Hui, YU Siqi, SUN Dawei, et al. An overview of control technologies and principles for grid-forming converters[J]. Proceedings of the CSEE, 2025, 45(1): 277-297.
[10]
ZHONG Q C. Virtual synchronous machines: a unified interface for grid integration[J]. IEEE Power Electronics Magazine, 2016, 3(4): 18-27.
[11]
阮亮, 王杨, 肖先勇, 等. 跟网型和构网型变流器动态交互特性分析[J]. 智慧电力, 2024, 52(7): 103-110.
RUAN Liang, WANG Yang, XIAO Xianyong, et al. Dynamic interaction control characteristic analysis of gridfollowing and grid-forming inverters[J]. Smart Power, 2024, 52(7): 103-110.
[12]
OSHNOEI A, SOROURI H, TEODORESCU R, et al. An intelligent synchronous power control for grid-forming inverters based on brain emotional learning[J]. IEEE Transactions on Power Electronics, 2023, 38(10): 12401-12405.
[13]
王仕韬, 郭方正, 李立, 等. 孤岛下基于虚拟振荡器控制的构网型并联逆变器电压控制策略[J]. 电力自动化设备, 2025, 45(1): 131-138, 183.
WANG Shitao, GUO Fangzheng, LI Li, et al. Voltage control strategy of grid forming parallel inverters based on virtual oscillator control under islanded mode[J]. Electric Power Automation Equipment, 2025, 45(1): 131-138, 183.
[14]
黄炳政, 陈俊儒, 刘牧阳, 等. 基于自适应虚拟阻抗的构网型变流器暂态稳定性提升策略研究[J]. 电力系统保护与控制, 2025, 53(12): 57-68.
HUANG Bingzheng, CHEN Junru, LIU Muyang, et al. Grid-forming converter transient stability enhancement strategy based on adaptive virtual impedance[J]. Power System Protection and Control, 2025, 53(12): 57-68.
[15]
LI B T, ZHENG D C, LI B, et al. Analysis of low voltage ride-through capability and optimal control strategy of doubly-fed wind farms under symmetrical fault[J]. Protection and Control of Modern Power Systems, 2023, 8: 36.
Given the “carbon neutralization and carbon peak” policy, enhancing the low voltage ride-through (LVRT) capability of wind farms has become a current demand to ensure the safe and stable operation of power systems in the context of a possible severe threat of large-scale disconnection caused by wind farms. Currently, research on the LVRT of wind farms mainly focuses on suppressing rotor current and providing reactive current support, while the impact of active current output on LVRT performance has not been thoroughly discussed. This paper studies and reveals the relationship between the limit of reactive current output and the depth of voltage drop during LVRT for doubly-fed induction generator (DFIG) based wind farms. Specifically, the reactive current output limit of the grid-side converter is independent of the depth of voltage drop, and its limit is the maximum current allowed by the converter, while the reactive current output limit of the DFIG stator is a linear function of the depth of voltage drop. An optimized scheme for allocating reactive current among the STATCOM, DFIG stator, and grid-side converter is proposed. The scheme maximizes the output of active current while satisfying the standard requirements for reactive current output. Compared to traditional schemes, the proposed LVRT optimization strategy can output more active power during the LVRT period, effectively suppressing the rate of rotor speed increase, and improving the LVRT performance and fault recovery capability of wind farms. Simulation results verify the effectiveness of the proposed scheme.
[16]
刘洋, 陆秋瑜, 张帆, 等. 构网型储能并网系统全工况振荡特性分析[J]. 电力自动化设备, 2025, 45(3): 24-32.
LIU Yang, LU Qiuyu, ZHANG Fan, et al. Analysis of oscillation characteristics of grid forming energy storage grid-connected system under all working conditions[J]. Electric Power Automation Equipment, 2025, 45(3): 24-32.
[17]
VASQUEZ J C, GUERRERO J M, SAVAGHEBI M, et al. Modeling, analysis, and design of stationary-reference-frame droop-controlled parallel three-phase voltage source inverters[J]. IEEE Transactions on Industrial Electronics, 2013, 60(4): 1271-1280.
[18]
VITTAL E, O’MALLEY M, KEANE A. Rotor angle stability with high penetrations of wind generation[J]. IEEE Transactions on Power Systems, 2012, 27(1): 353-362.
[19]
EDRAH M, LO K L, ANAYA-LARA O. Impacts of high penetration of DFIG wind turbines on rotor angle stability of power systems[J]. IEEE Transactions on Sustainable Energy, 2015, 6(3): 759-766.
[20]
WU H, WANG X F. Design-oriented transient stability analysis of grid-connected converters with power synchronization control[J]. IEEE Transactions on Industrial Electronics, 2019, 66(8): 6473-6482.
[21]
HUANG L B, XIN H H, WANG Z, et al. Transient stability analysis and control design of droop-controlled voltage source converters considering current limitation[J]. IEEE Transactions on Smart Grid, 2019, 10(1): 578-591.
[22]
SHUAI Z K, SHEN C, LIU X, et al. Transient angle stability of virtual synchronous generators using Lyapunov’s direct method[J]. IEEE Transactions on Smart Grid, 2019, 10(4): 4648-4661.
[23]
PAN D H, WANG X F, LIU F C, et al. Transient stability of voltage-source converters with grid-forming control: a design-oriented study[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8(2): 1019-1033.
[24]
李华, 高怀正, 郝悦, 等. 基于虚拟同步发电机低电压穿越的无缝切换控制策略[J]. 太阳能学报, 2021, 42(3): 114-120.
LI Hua, GAO Huaizheng, HAO Yue, et al. Seamless switching control strategy for low voltage ride-through based on virtual synchronous generator[J]. Acta Energiae Solaris Sinica, 2021, 42(3): 114-120.
[25]
SAFFAR K G, DRISS S, AJAEI F B. Impacts of current limiting on the transient stability of the virtual synchronous generator[J]. IEEE Transactions on Power Electronics, 2023, 38(2): 1509-1521.
[26]
WANG J L, ZHANG X. Active power and voltage cooperative control for improving fault ride-through capability of grid-forming converters[J]. IEEE Transactions on Industrial Electronics, 2024, 71(10): 12301-12311.
[27]
ZHU D H, ZHOU S Y, ZOU X D, et al. Improved design of PLL controller for LCL-type grid-connected converter in weak grid[J]. IEEE Transactions on Power Electronics, 2019, 35(5): 4715-4727.
[28]
周步祥, 丁豪, 周毅, 等. 基于角频率偏差积分反馈的构网型逆变器暂态稳定提升策略[J]. 电力系统保护与控制, 2025, 53(4): 59-71.
ZHOU Buxiang, DING Hao, ZHOU Yi, et al. A transient stability enhancement strategy for grid-forming inverters based on integral feedback of angular frequency deviation[J]. Power System Protection and Control, 2025, 53(4): 59-71.
[29]
CHEN S M, SUN Y, HAN H, et al. A modified VSG control scheme with virtual resistance to enhance both small-signal stability and transient synchronization stability[J]. IEEE Transactions on Power Electronics, 2023, 38(5): 6005-6014.
[30]
梁帅, 姚良忠, 徐箭, 等. 基于电力电子变换器虚拟同步构网控制的电力系统暂态稳定极限提升方法[J]. 中国电机工程学报, 2025, 45(8): 2911-2925.
LIANG Shuai, YAO Liangzhong, XU Jian, et al. Power system transient stability limit enhancement method based on virtual synchronous grid-forming control of power electronic converters[J]. Proceedings of the CSEE, 2025, 45(8): 2911-2925.
[31]
徐晨航, 邹志翔, 陈武, 等. 面向暂态稳定性提升的构网型储能系统自适应控制方法[J]. 电网技术, 2024, 48(11): 4658-4668.
XU Chenhang, ZOU Zhixiang, CHEN Wu, et al. Grid-forming based energy storage system adaptive control for transient stability enhancement[J]. Power System Technology, 2024, 48(11): 4658-4668.
[32]
甘青山, 宋美艳, 兰洲. 基于附加功率的虚拟同步发电机功角稳定优化控制策略[J]. 能源工程, 2019, 39(3): 47-52.
GAN Qingshan, SONG Meiyan, LAN Zhou. Power angle stability optimization control method of virtual synchronous generator based on additional power[J]. Energy Engineering, 2019, 39(3): 47-52.
[33]
刘瑞平, 袁亮, 胡铭欣, 等. 含构网型新能源发电单元的孤立电网暂态稳定性提升策略[J]. 电力科学与技术学报, 2024, 39(6): 152-161.
LIU Ruiping, YUAN Liang, HU Mingxin, et al. A transient stability improvement strategy of isolated power grids with grid-forming-based renewable energy power generation units[J]. Journal of Electric Power Science and Technology, 2024, 39(6): 152-161.
[34]
杨可昕, 鲍颜红, 任先成, 等. 直接电压控制构网型变流器控制参数暂态稳定影响分析[J]. 电力系统保护与控制, 2024, 52(8): 20-30.
YANG Kexin, BAO Yanhong, REN Xiancheng, et al. Analysis of transient stability effects of control parameters for direct voltage control grid-forming converters[J]. Power System Protection and Control, 2024, 52(8): 20-30.
[35]
詹长江, 吴恒, 王雄飞, 等. 构网型变流器稳定性研究综述[J]. 中国电机工程学报, 2023, 43(6): 2339-2359.
ZHAN Changjiang, WU Heng, WANG Xiongfei, et al. An overview of stability studies of grid-forming voltage source converters[J]. Proceedings of the CSEE, 2023, 43(6): 2339-2359.
[36]
梁少辉, 陈俊儒, 陈永平, 等. 构网型MMC-SVG控制方案的设计[J]. 智慧电力, 2025, 53(4): 53-61.
LIANG Shaohui, CHEN Junru, CHEN Yongping, et al. Design of grid-forming MMC-SVG control scheme[J]. Smart Power, 2025, 53(4): 53-61.
[37]
ZHAO Z, GANG M Z, XIONG L F, et al. Transient stability analysis and adaptive control strategy for offshore wind GFM converter[J]. Electrical Engineering, 2025, 107(10): 13487-13500.
[38]
张昊. 下垂控制构网型并网逆变器的暂态失稳机理及稳定性增强策略研究[D]. 武汉: 华中科技大学, 2023.
ZHANG Hao. Research on transient instability mechanism and stability enhancement strategy of GFM grid-connected inverter with droop control[D]. Wuhan: Huazhong University of Science and Technology, 2023.
[39]
李建林, 丁子洋, 游洪灏, 等. 构网型储能支撑新型电力系统稳定运行研究[J]. 高压电器, 2023, 59(7): 1-11.
LI Jianlin, DING Ziyang, YOU Honghao, et al. Research on stable operation of new power system supported by grid-forming energy storage system[J]. High Voltage Apparatus, 2023, 59(7): 1-11.
[40]
孙艺鹤. 电网对称故障下构网型并网逆变器低电压穿越控制技术研究[D]. 徐州: 中国矿业大学, 2023.
SUN Yihe. Research on low voltage ride-through control technology of GFM grid-connected inverter under grid symmetrical fault[D]. Xuzhou: China University of Mining and Technology, 2023.
[41]
吕思卓, 郑超, 姜静雅. 基于功率指令切换的双级式构网型光伏故障穿越控制策略[J]. 电网技术, 2024, 48(3): 1281-1291.
Sizhuo, ZHENG Chao, JIANG Jingya. Fault ride-through control strategy for double-stage grid-forming photovoltaic based on power order switching[J]. Power System Technology, 2024, 48(3): 1281-1291.
[42]
李娟, 隋政龙, 满珈玮, 等. 兼顾功角稳定和故障限流的构网型逆变器暂态控制策略[J]. 电网技术, 2025, 49(10): 4125-4134.
LI Juan, SUI Zhenglong, MAN Jiawei, et al. Transient control strategy for grid-forming inverters with both power angle stabilization and fault current limitation[J]. Power System Technology, 2025, 49(10): 4125-4134.
[43]
刘思佳, 刘海涛, 张隽, 等. 基于等效阻抗的虚拟同步机电压支撑影响因素分析与改进控制策略研究[J]. 电工技术学报, 2025, 40(9): 2738-2751.
LIU Sijia, LIU Haitao, ZHANG Jun, et al. Research on the analysis of virtual synchronous generator voltage support influence factors and improvement control strategies based on equivalent impedance[J]. Transactions of China Electrotechnical Society, 2025, 40(9): 2738-2751.

基金

国家自然科学基金项目(52277171)

编辑: 张小飞
PDF(8578 KB)

Accesses

Citation

Detail

段落导航
相关文章
AI小编
你好!我是《电力建设》AI小编,有什么可以帮您的吗?

/