极端天气下含灵活资源的新型电力系统韧性研究综述

加鹤萍, 吴昌蔚, 刘敦楠, 杨菁, 余涛

电力建设 ›› 2026, Vol. 47 ›› Issue (1) : 90-111.

PDF(2772 KB)
PDF(2772 KB)
电力建设 ›› 2026, Vol. 47 ›› Issue (1) : 90-111. DOI: 10.12204/j.issn.1000-7229.2026.01.008
规划建设

极端天气下含灵活资源的新型电力系统韧性研究综述

作者信息 +

Review on the Resilience of New Power Systems with Flexible Resources under Extreme Weather Conditions

Author information +
文章历史 +

摘要

【目的】“双碳”目标下,随着能源低碳化进程和新能源发展步入快车道,低概率、高风险的极端天气给高新能源占比的新型电力系统安全可靠运行带来突出挑战。电力灵活资源如电动汽车、分布式发电等能够为极端天气下的系统韧性提升提供解决方案。【方法】文章首先阐述了电力系统韧性概念特征,揭示了极端天气对新型电力系统的影响;其次,从极端天气下的系统元件建模、系统韧性分析方法、韧性指标体系等三个方面阐述了极端天气下的新型电力系统韧性研究;然后,通过分析极端天气下的电力灵活资源可调能力,从源、网、荷、储四个方面,面向极端天气下的预防、紧急调控与供电快速恢复三个阶段,分析极端天气下考虑灵活资源的新型电力系统韧性提升策略。【结果】最后,针对极端天气下含灵活资源的新型电力系统韧性研究发展方向进行展望,旨在形成极端天气下新型电力系统风险控制及韧性提升的闭环管理,为极端天气下的电力保供提供理论依据。

Abstract

[Objective] Under China’s “dual carbon” goals,as energy decarbonization accelerates and renewable energy deployment enters a fast-growth phase,low-probability but high-risk extreme weather poses significant challenges to the safe and reliable operation of new power systems with high renewable energy penetration. Flexible power resources—such as electric vehicles and distributed generation—offer solutions to enhance system resilience during extreme weather. [Methods] This paper outlines the conceptual characteristics of power system resilience and examines the impact of extreme weather on new power systems. It reviews the resilience research of new power systems under extreme weather from three aspects:system component modeling under extreme weather,system resilience analysis methods,and resilience indicator frameworks. Furthermore,by analyzing the adjustable capacity of flexible power resources during extreme weather,the paper proposes strategies for enhancing the resilience of new power systems considering flexibility and extreme weather from four perspectives(generation,grid,load,and storage),and across three stages(prevention,emergency control,and rapid power restoration). [Conclusions] Finally,the paper identifies research directions on the resilience of new power systems with flexible resources under extreme weather,aiming to establish a closed-loop risk management and resilience enhancement framework,and provide a theoretical basis for ensuring power supply during extreme weather.

关键词

极端天气 / 灵活资源 / 系统韧性 / 新型电力系统

Key words

extreme weather / flexible resources / system resilience / new power system

引用本文

导出引用
加鹤萍, 吴昌蔚, 刘敦楠, . 极端天气下含灵活资源的新型电力系统韧性研究综述[J]. 电力建设. 2026, 47(1): 90-111 https://doi.org/10.12204/j.issn.1000-7229.2026.01.008
JIA Heping, WU Changwei, LIU Dunnan, et al. Review on the Resilience of New Power Systems with Flexible Resources under Extreme Weather Conditions[J]. Electric Power Construction. 2026, 47(1): 90-111 https://doi.org/10.12204/j.issn.1000-7229.2026.01.008
中图分类号: TM73   

参考文献

[1]
新华社. 推进国家安全体系和能力现代化,坚决维护国家安全和社会稳定[R]. 北京: 中华人民共和国中央人民政府, 2022.
[2]
新华社. 新时代的中国国家安全白皮书[R]. 北京: 中华人民共和国中央人民政府, 2025.
[3]
国家发展改革委, 国家能源局. 关于加强新形势下电力系统稳定工作的指导意见(发改能源〔2023〕1294号)[EB/OL].(2023-12-25)[2024-12-9]. https://www.ndrc.gov.cn/xxgk/zcfb/tz/202310/t20231025_1361514_ext.html.
[4]
何维国, 王赛一, 许唐云, 等. 城市韧性配电网建设与发展路径[J]. 电网技术, 2022, 46(2): 680-690.
HE Weiguo, WANG Saiyi, XU Tangyun, et al. Construction and development path of the urban resilient distribution network[J]. Power System Technology, 2022, 46(2): 680-690.
[5]
安学民, 孙华东, 张晓涵, 等. 美国得州“2.15” 停电事件分析及启示[J]. 中国电机工程学报, 2021, 41(10): 3407-3415, 3666.
AN Xuemin, SUN Huadong, ZHANG Xiaohan, et al. Analysis and lessons of Texas power outage event on February 15, 2021[J]. Proceedings of the CSEE, 2021, 41(10): 3407-3415, 3666.
[6]
高红均, 郭明浩, 刘俊勇, 等. 从四川高温干旱限电事件看新型电力系统保供挑战与应对展望[J]. 中国电机工程学报, 2023, 43(12): 4517-4538.
GAO Hongjun, GUO Minghao, LIU Junyong, et al. Power supply challenges and prospects in new power system from Sichuan electricity curtailment events caused by high-temperature drought weather[J]. Proceedings of the CSEE, 2023, 43(12): 4517-4538.
[7]
胡博, 谢开贵, 邵常政, 等. 双碳目标下新型电力系统风险评述: 特征、指标及评估方法[J]. 电力系统自动化, 2023, 47(5): 1-15.
HU Bo, XIE Kaigui, SHAO Changzheng, et al. Commentary on risk of new power system under goals of carbon emission peak and carbon neutrality: characteristics, indices and assessment methods[J]. Automation of Electric Power Systems, 2023, 47(5): 1-15.
[8]
邱爱慈, 别朝红, 李更丰, 等. 强电磁脉冲威胁与弹性电力系统发展战略[J]. 现代应用物理, 2021, 12(3): 3-12.
QIU Aici, BIE Zhaohong, LI Gengfeng, et al. HEMP threat and development strategy of resilient power system[J]. Modern Applied Physics, 2021, 12(3): 3-12.
[9]
US. Department of Energy. Smart grid system report[R]. Washington, DC: U.S. Department of Energy, 2009.
[10]
Presidential policy directive-critical infrastructure security and resilience[R/OL]. White House Press Release, 2013.
[11]
The ERP Working Group Members. Future resilience of the UK,electricity system[R]. Energy Research Partnership(ERP) 2018.
[12]
BIE Z H, LIN Y L, LI G F, et al. Battling the extreme: a study on the power system resilience[J]. Proceedings of the IEEE, 2017, 105(7): 1253-1266.
[13]
高海翔, 陈颖, 黄少伟, 等. 配电网韧性及其相关研究进展[J]. 电力系统自动化, 2015, 39(23): 1-8.
GAO Haixiang, CHEN Ying, HUANG Shaowei, et al. Distribution systems resilience: an overview of research progress[J]. Automation of Electric Power Systems, 2015, 39(23): 1-8.
[14]
鞠平, 王冲, 辛焕海, 等. 电力系统的柔性、弹性与韧性研究[J]. 电力自动化设备, 2019, 39(11): 1-7.
JU Ping, WANG Chong, XIN Huanhai, et al. Flexibility, resilience and toughness of power system[J]. Electric Power Automation Equipment, 2019, 39(11): 1-7.
[15]
杜洁, 张海锋, 王佳蕊, 等. 计及用户热耐受度的区域综合能源系统韧性评估及提升研究[J]. 全球能源互联网, 2024, 7(1): 3-13.
DU Jie, ZHANG Haifeng, WANG Jiarui, et al. Resilience assessment and enhancement oriented human heat tolerance of regional integrated energy systems[J]. Journal of Global Energy Interconnection, 2024, 7(1): 3-13.
[16]
孙为民, 孙华东, 何剑, 等. 面向严重自然灾害的电力系统韧性评估技术综述[J]. 电网技术, 2024, 48(1): 129-139.
SUN Weimin, SUN Huadong, HE Jian, et al. Review of power system resilience assessment techniques for severe natural disasters[J]. Power System Technology, 2024, 48(1): 129-139.
[17]
PANTELI M, MANCARELLA P. The grid: stronger, bigger, smarter?: presenting a conceptual framework of power system resilience[J]. IEEE Power and Energy Magazine, 2015, 13(3): 58-66.
[18]
别朝红, 卞艺衡, 张理寅, 等. 新型电力系统应对极端事件的风险防范与应急管理关键技术[J]. 中国电机工程学报, 2024, 44(18): 7049-7068.
BIE Zhaohong, BIAN Yiheng, ZHANG Liyin, et al. Key technologies of risk prevention and emergency management against extreme events for new power systems[J]. Proceedings of the CSEE, 2024, 44(18): 7049-7068.
[19]
阮前途, 谢伟, 许寅, 等. 韧性电网的概念与关键特征[J]. 中国电机工程学报, 2020, 40(21): 6773-6784.
RUAN Qiantu, XIE Wei, XU Yin, et al. Concept and key features of resilient power grids[J]. Proceedings of the CSEE, 2020, 40(21): 6773-6784.
[20]
尹莞婷, 王嘉杰, 王智敏, 等. 典型极端气候下电网未来态调度的数字化效果[J]. 电网与清洁能源, 2025, 41(10): 1-13.
YIN Wanting, WANG Jiajie, WANG Zhimin, et al. Digital effects of future-state power-grid dispatch under typical extreme-climate conditions[J]. Power System and Clean Energy, 2025, 41(10): 1-13.
[21]
许静, 孔德政, 邢朝健, 等. 面向极端天气的发电设备自适应鲁棒防御策略[J]. 智慧电力, 2025, 53(9): 74-80.
XU Jing, KONG Dezheng, XING Chaojian, et al. Adaptive robust defense strategies for power generation equipment against extreme weather conditions[J]. Smart Power, 2025, 53(9): 74-80.
[22]
降水量等级: GB/T 28592—2012[S]. 北京: 中国标准出版社, 2012.
Grade of precipitation: GB/T 28592—2012[S]. Beijing: Standards Press of China, 2012.
[23]
沙尘暴天气预警: GB/T 28593—2012[S]. 北京: 中国标准出版社, 2012.
Warning of sand and dust storm weather: GB/T 28593—2012[S]. Beijing: Standards Press of China, 2012.
[24]
冯家欢, 史雪晨, 张赟, 等. 基于张量低秩补全算法的极端天气短期负荷预测[J]. 分布式能源, 2024, 9(4): 51-59.
FENG Jiahuan, SHI Xuechen, ZHANG Yun, et al. Short-term load forecasting based on tensor low-rank completion algorithm in extreme weather[J]. Distributed Energy, 2024, 9(4): 51-59.
[25]
陈玮, 周贤正, 李晏君, 等, 考虑电动汽车配置的主动配电网鲁棒孤岛恢复[J]. 中国电机工程学报, 2018, 38(S1): 58-67.
CHEN Wei, ZHOU Xianzheng, LI Yanjun, et al. A robust islanding restoration policy for active distribution network considering optimal allocation of emergency electric vehicles[J]. Proceedings of the CSEE. 2018. 38(S1): 58-67.
[26]
张文博, 邢海军, 聂立君, 等. 考虑高渗透率可再生能源的新型电力系统可靠性评估综述[J]. 电测与仪表, 2025, 62(9): 51-61, 72.
ZHANG Wenbo, XING Haijun, NIE Lijun, et al. Review of the novel power system reliability assessment with high penetration renewable energy[J]. Electrical Measurement & Instrumentation, 2025, 62(9): 51-61, 72.
[27]
田泉, 王斌. 气候变化及极端天气对地区电力设备需求影响研究[J]. 电子测试, 2017(15): 127, 119.
TIAN Quan, WANG Bin. Research on the impacts of climate change and extreme weather on regional power equipment[J]. Electronic Test, 2017(15): 127, 119.
[28]
杨国林, 蒋兴良, 王茂政, 等. 输电线路单导线覆冰形状对直流大电流融冰时间的影响[J]. 电工技术学报, 2024, 39(9): 2916-2924.
YANG Guolin, JIANG Xingliang, WANG Maozheng, et al. The impact of ice accumulation shape on the DC high current ice-melting time for a single conductor on power transmission line[J]. Transactions of China Electrotechnical Society, 2024, 39(9): 2916-2924.
[29]
杨思全. “一带一路” 区域防灾减灾战略思路研究[J]. 中国保险, 2017(3): 7-11.
YANG Siquan. Study on the strategic thinking of disaster prevention and mitigation in the Belt and Road Region[J]. China Insurance, 2017(3): 7-11.
[30]
牛奎烨, 刘金波, 汤奕, 等. 计及极端气象事件的年度系统运行场景生成方法[J]. 电网技术, 2024, 48(10): 3992-4006.
NIU Kuiye, LIU Jinbo, TANG Yi, et al. A method for generating annual system operating scenarios considering extreme meteorological events[J]. Power System Technology, 2024, 48(10): 3992-4006.
[31]
卢赓, 邓婧, 王渝红, 等. 电力系统受极端天气的影响分析及其适应策略[J]. 发电技术, 2021, 42(6): 751-764.
摘要
气候变化对人类社会的影响越来越受关注,随之而来的一系列极端天气引发系统断电的风险也越来越显著。为应对气候变化尤其是极端天气,人类社会需采取减缓和适应2种应对策略,对于发展中国家与小岛国,由于气候变化已经发生,因此气候问题将首先是适应问题。为解决电力系统如何从各个环节完整地适应气候变化问题,建立了一个适应气候变化的电力系统发展体系,提出一种涵盖极端气象因素的电力系统发展路径构建方法。在总结各种极端天气对电力系统影响的基础上,对电网的脆弱性进行评价;研究了适应极端天气的总体策略,并提出电力系统适应极端天气事件的方案,即规划–建设–应急管理–评估(planning-construction-emergency management-assessment,PCEA)抗灾体系。在规划阶段重点进行保底电网规划,构建不停电最小电网主干网;基于方案不同阶段的应用实例,验证了PCEA体系可以促使电力系统更好地适应极端天气。
LU Geng, DENG Jing, WANG Yuhong, et al. Analysis of power system affected by extreme weather and its adaptive strategy[J]. Power Generation Technology, 2021, 42(6): 751-764.

The impact of climate change on human society has attracted more and more attention, and the risk of power outage caused by a series of extreme weather is becoming more and more significant. In order to deal with climate change, especially extreme weather, human society needs to adopt two coping strategies of mitigation and adaptation. For the developing countries and small island countries, since climate change has already taken place, the climate problem will first be adaptation. In order to solve the problem of how the power system can fully adapt to climate change from all aspects, a power system development system adapted to climate change was established, and a construction method of power system development path covering extreme meteorological factors was proposed. On the basis of summarizing the impacts of various extreme weather on the power system, the vulnerability of power grid was evaluated. The overall strategy of adapting to extreme weather was studied, and the scheme of power system adapting to extreme weather events was proposed, namely planning-construction-emergency management-assessment (PCEA) disaster resistance system. In the planning stage, the study focused on the minimum power grid planning and built the minimum power grid backbone network without power outage. Based on the application examples in different stages of the scheme, it was verified that the PCEA system can make the power system better adapt to the extreme weather.

[32]
朱永清, 林佳宁, 李庆生, 等. 冰灾下考虑多重不确定性的负荷聚合商市场力评估方法[J]. 浙江电力, 2024, 43(1): 64-71.
ZHU Yongqing, LIN Jianing, LI Qingsheng, et al. A market power assessment method for load aggregators considering multiple uncertainties under ice disasters[J]. Zhejiang Electric Power, 2024, 43(1): 64-71.
[33]
李京, 王国庆, 朱建明, 等. 冰雪灾害背景下电网投资优化和韧性提升模型[J]. 中国管理科学, 2020, 28(3): 122-131.
LI Jing, WANG Guoqing, ZHU Jianming, et al. Investment optimization and resilience enhancement of power system under ice storm disaster[J]. Chinese Journal of Management Science, 2020, 28(3): 122-131.
[34]
HOU G Y, MURALEETHARAN K K, PANCHALOGARANJAN V, et al. Resilience assessment and enhancement evaluation of power distribution systems subjected to ice storms[J]. Reliability Engineering & System Safety, 2023, 230: 108964.
[35]
耿宁, 覃智君, 黄镇. 台风灾害下含多元储能的电-气-热综合能源系统韧性提升策略[J]. 电网与清洁能源, 2025, 41(9): 64-73.
GENG Ning, QIN Zhijun, HUANG Zhen. A resilience enhancement strategy for electricity-gas-heat integrated energy systems with multi-energy storage under typhoon disaster[J]. Power System and Clean Energy, 2025, 41(9): 64-73.
[36]
陈朝晖, 汤海涛. 台风极值风速的数值模拟及分布模型[J]. 重庆大学学报, 2008, 31(11): 1285-1289.
CHEN Zhaohui, TANG Haitao. Distribution models of extreme typhoon winds based on numerical simulation of wind data[J]. Journal of Chongqing University, 2008, 31(11): 1285-1289.
[37]
LIU Y, XIE S P, DENG M H, et al. Toughness analysis and enhancement strategy research of distribution network in extreme environment[C]// 2020 IEEE 4th Conference on Energy Internet and Energy System Integration (EI2). IEEE, 2020: 1929-1934.
[38]
黄坤鹏, 赵平, 康留涛. 高低温条件下隔离开关零部件机械特性研究及稳定性提升措施[J]. 高压电器, 2024, 60(8): 259-268.
HUANG Kunpeng, ZHAO Ping, KANG Liutao. Research on mechanical characteristics and stability improvement measures of disconnector parts under hot and cold temperature conditions[J]. High Voltage Apparatus, 2024, 60(8): 259-268.
[39]
袁家海, 张凯, 张健, 等. 极端高温天气下电力系统韧性提升策略[J]. 发电技术, 2025, 46(4): 694-704.
摘要
目的 为应对极端高温天气对电力系统供需平衡造成的冲击,提出一种面向中长期的电力系统韧性提升方法。 方法 首先,模拟持续性极端高温场景下“源-荷”耦合出力特性,并利用时序运行模拟模型对系统韧性表现进行初评估;其次,基于运行模拟结果,在电力供需平衡的基础上以供电成本与负荷削减成本之和最小为目标,建立面向韧性提升的电力资源规划模型,得到韧性提升组合措施;最后,对韧性提升策略场景进行运行模拟,以验证其有效性。 结果 以2025年广东省为案例场景,与未实施电力系统韧性提升策略的场景相比,实施策略后极端高温天气下系统累积缺供电量、最大失负荷规模和因电力短缺而造成的经济损失分别降低了86.71%、60.72%和91.55%,系统最小供电水平提升了11.07%。 结论 通过协同供电资源扩容与负荷资源部署,电力系统韧性提升策略有效地提升了极端高温天气下系统的供电能力,同时降低了因电力短缺而造成的经济损失和社会代价。
YUAN Jiahai, ZHANG Kai, ZHANG Jian, et al. Resilience enhancement strategies for power systems under extreme high-temperature weather[J]. Power Generation Technology, 2025, 46(4): 694-704.

Objectives To address the impact of extreme high-temperature weather on the supply and demand balance of power systems, a medium- to long-term method for enhancing power system resilience is proposed. Methods First, the coupled “source-load” output characteristics under sustained extreme high-temperature scenarios are simulated, and an initial evaluation of system resilience is performed using a chronological operation simulation model. Second, based on the operation simulation results, a resilience enhancement-oriented power resource planning model is established, with the objective of minimizing the combined cost of power supply and load shedding under the constraint of supply and demand balance, thereby deriving combined measures for resilience enhancement. Finally, operation simulations of the resilience enhancement strategy scenarios are conducted to verify their effectiveness. Results Taking Guangdong Province in 2025 as a case study, compared with the scenario without the implementation of the resilience enhancement strategies for power systems, the application of such strategies under extreme high-temperature weather decreases the cumulative power shortage, maximum lost load scale, and economic losses caused by power shortage by 86.71%, 60.72%, and 91.55%, respectively. The system’s minimum power supply level increases by 11.07%. Conclusions By coordinating the expansion of power supply resources and deployment of load resources, the resilience enhancement strategies effectively improve the power system’s supply capacity under extreme high-temperature weather, while reducing the economic loss and social cost caused by power shortages.

[40]
闵骞, 张万琨. 水库水面蒸发量计算方法的研究[J]. 水力发电, 2003, 29(5): 35-40.
MIN Qian, ZHANG Wankun. Study on the calculation method of reservoir surface evaporation[J]. Water Power, 2003, 29(5): 35-40.
[41]
AL-KHAYAT M, AL-RASHEEDI M. A new method for estimating the annual energy production of wind turbines in hot environments[J]. Renewable and Sustainable Energy Reviews, 2024, 195: 114343.
[42]
WANG Y H, ZHANG Q T, LIN K R, et al. A novel framework for urban flood risk assessment: multiple perspectives and causal analysis[J]. Water Research, 2024, 256: 121591.
[43]
SHI Y J, ZHAI G F, XU L H, et al. Assessment methods of urban system resilience: from the perspective of complex adaptive system theory[J]. Cities, 2021, 112: 103141.
[44]
XU C L, NIE Z R, PENG Y C. Fault prediction for distribution transformers based on stacking[C]// 2024 IEEE 6th International Conference on Power, Intelligent Computing and Systems (ICPICS). IEEE, 2024: 1221-1227.
[45]
金坤坎, 郝丽丽, 闫新旭, 等. 考虑热浪或寒潮下城市电网供需安全的风-光-抽蓄协同规划[J]. 电力自动化设备, 2025, 45(10): 30-39, 58.
JIN Kunkan, HAO Lili, YAN Xinxu, et al. Collaborative planning of wind-photovoltaic-pumped storage considering supply-demand security of urban power grid under heat wave or cold wave[J]. Electric Power Automation Equipment, 2025, 45(10): 30-39, 58.
[46]
黄涛, 张智, 丁玉杰, 等. 考虑寒潮天气下源-网故障概率信息的两阶段鲁棒预防调度方法[J]. 高电压技术, 2025, 51(10): 5114-5126.
HUANG Tao, ZHANG Zhi, DING Yujie, et al. A two-stage robust preventive scheduling method incorporating source-grid failure probabilities under cold wave weather[J]. High Voltage Engineering, 2025, 51(10): 5114-5126.
[47]
汤奕, 易俊, 薛峰. “双碳” 目标下的新型电力系统规划与运行[J]. 全球能源互联网, 2024, 7(3): 241-242.
TANG Yi, YI Jun, XUE Feng. Planning and operation of new power system under the goal of “dual carbon”[J]. Journal of Global Energy Interconnection, 2024, 7(3): 241-242.
[48]
黄定威, 王锋, 李波. 面向新型电力系统的含风光储配电网多目标调度方法[J]. 电测与仪表, 2025, 62(3): 38-45.
HUANG Dingwei, WANG Feng, LI Bo. A multi-objective scheduling method for wind and solar energy storage and distribution network facing novel power system[J]. Electrical Measurement & Instrumentation, 2025, 62(3): 38-45.
[49]
黄文鑫, 吴军, 郭子辉, 等. 台风灾害下电网韧性评估及差异化规划[J]. 电力系统自动化, 2023, 47(5): 84-91.
HUANG Wenxin, WU Jun, GUO Zihui, et al. Power grid resilience assessment and differentiated planning against typhoon disasters[J]. Automation of Electric Power Systems, 2023, 47(5): 84-91.
[50]
韩林, 赵旭东, 陈志龙, 等. 蓄意攻击下城市电力网络毁伤韧性评估[J]. 中国安全科学学报, 2021, 31(6): 161-169.
摘要
为提升蓄意攻击威胁下城市电力网络毁伤韧性评估的有效性,采用性能时程响应函数(PRF)法,结合攻防双方策略博弈模型,建立蓄意攻击下城市电力网络毁伤韧性评估方法及流程;同时,融合电力潮流分析设计新型性能PRF,使韧性评估结果更符合电力网络实际功能需求;以我国某市电力网络为例,依托策略博弈模型求解出纳什均衡状态下攻防双方策略,并评估不同恢复条件下该电力网络毁伤韧性。研究结果表明:纳什均衡策略为攻防双方最有可能采取的攻击和防护策略,城市电力网络的毁伤韧性受恢复资源和恢复预算2个条件共同控制,恢复资源决定网络的恢复速度,恢复预算决定网络的恢复程度。
HAN Lin, ZHAO Xudong, CHEN Zhilong, et al. Research on damage resilience assessment of urban power networks under intentional attacks[J]. China Safety Science Journal, 2021, 31(6): 161-169.
In order to improve effectiveness of damage resilience assessment of urban power networks under threat of intentional attacks, a performance response function(PRF) method was used in combination with strategy game model of attacker and defender to develop a damage resilience assessment method and procedure. At the same time, a new type of performance response function was designed by integrating power flow analysis to make resilience evaluation result better meet actual functional requirements of power network. Finally, with a power network in a city of China as an example, strategy game model was employed to solve Nash equilibrium strategies of attacker and defender, and damage resilience under different recovery conditions was evaluated. The results show that Nash equilibrium strategy is the most possible attack and defend strategy for both sides, and damage resilience of urban power network is jointly controlled by recovery resources and recovery budget. While the former decides recovery speed, the latter determines recovery level.
[51]
王丽英, 崔利荣. 基于随机过程理论的多状态系统建模与可靠性评估[M]. 北京: 科学出版社, 2017.
[52]
LIU T, BAI G H, TAO J Y, et al. Modeling and evaluation method for resilience analysis of multi-state networks[J]. Reliability Engineering & System Safety, 2022, 226: 108663.
[53]
白光晗, 张帅, 张云安, 等. 多状态网络可靠性与韧性评估方法综述[J]. 中国科学: 技术科学, 2023, 53(8): 1284-1301.
BAI Guanghan, ZHANG Shuai, ZHANG Yun’an, et al. Survey of multistate network reliability and resilience evaluation methods[J]. Scientia Sinica (Technologica), 2023, 53(8): 1284-1301.
[54]
史跃东, 金家善, 柴凯. 大型复杂系统多态可靠性快速评估算法[J]. 系统工程与电子技术, 2022, 44(10): 3282-3290.
摘要
开展装备系统可靠性评估工作, 对于发挥装备固有性能、提升装备使用效能、降低装备管控风险, 具有重要工程应用价值。针对大型装备复杂系统, 通过构建面向不同耦合结构的极限序列核和极限可靠度逼近函数, 探索了一类计算资源要求低, 计算便捷, 且逼近精度满足工程需要的多状态可靠性建模、分析与快速评估方法。案例研究表明: 算法突破了装备复杂系统大维度可靠性解算技术瓶颈, 提升了可靠性评估效率, 且评估与风险预报效果好; 算法丰富了装备复杂系统多状态可靠性建模、分析与评估体系, 可为可靠性工程的设计、使用与管理人员, 提供前沿理论储备和工程技术借鉴。
SHI Yuedong, JIN Jiashan, CHAI Kai. Multi-state reliability fast evaluation algorithm for large-scale complex system[J]. Systems Engineering and Electronics, 2022, 44(10): 3282-3290.

Carrying out reliability evaluation of equipment system has important engineering application value for ehhancing performance, improving efficiency, and reducing management and control risks. Aiming at the large-scale complex equipment system, by constructing limit sequence kernel and limit reliability approximation function for different coupling structures, a multi-state reliability modeling, analysis, and fast evaluation method with low requirement of calculation resources, calculation convenience, and approximation accuracy meeting the needs of engineering is explored. The case study shows that the algorithm breaks through the bottleneck of large-scale reliability calculation technology of complex equipment system, improves the efficiency of reliability evaluation, and has good effect in evaluation and risk prediction. Moreover, the algorithm enriches the multi-state reliability modeling, analysis, and evaluation system of complex equipment system, which can provide advanced theoretical reserves and engineering technology reference for reliability engineering design, use, and management personnel.

[55]
别朝红, 李更丰. 极端天气条件下新型电力系统风险评估与弹性提升[J]. 全球能源互联网, 2024, 7(1): 1-2.
BIE Zhaohong, LI Gengfeng. Risk assessment and resilience improvement of new power systems in extreme weather[J]. Journal of Global Energy Interconnection, 2024, 7(1): 1-2.
[56]
张译心, 狄晨烨, 赵男, 等. 面向复合极端天气的高新能源渗透率电网风险评估技术[J]. 电力建设, 2024, 45(10): 34-46.
ZHANG Yixin, DI Chenye, ZHAO Nan, et al. Risk assessment techniques for grids with high penetration of new energy under extreme weather conditions[J]. Electric Power Construction, 2024, 45(10): 34-46.
[57]
EAJAL A A, EL-AWADY A, EL-SAADANY E F, et al. A Bayesian approach to the reliability analysis of renewables-dominated islanded DC microgrids[J]. IEEE Transactions on Power Systems, 2021, 36(5): 4296-4309.
[58]
BRUNEAU M, CHANG S E, EGUCHI R T, et al. A framework to quantitatively assess and enhance the seismic resilience of communities[J]. Earthquake Spectra, 2003, 19(4): 733-752.
This paper presents a conceptual framework to define seismic resilience of communities and quantitative measures of resilience that can be useful for a coordinated research effort focusing on enhancing this resilience. This framework relies on the complementary measures of resilience: “Reduced failure probabilities,” “Reduced consequences from failures,” and “Reduced time to recovery.” The framework also includes quantitative measures of the “ends” of robustness and rapidity, and the “means” of resourcefulness and redundancy, and integrates those measures into the four dimensions of community resilience—technical, organizational, social, and economic—all of which can be used to quantify measures of resilience for various types of physical and organizational systems. Systems diagrams then establish the tasks required to achieve these objectives. This framework can be useful in future research to determine the resiliency of different units of analysis and systems, and to develop resiliency targets and detailed analytical procedures to generate these values.
[59]
ZHANG H J, WANG P, YAO S H, et al. Resilience assessment of interdependent energy systems under hurricanes[J]. IEEE Transactions on Power Systems, 2020, 35(5): 3682-3694.
[60]
陈碧云, 李翠珍, 覃鸿, 等. 考虑网架重构和灾区复电过程的配电网抗台风韧性评估[J]. 电力系统自动化, 2018, 42(6): 47-52.
CHEN Biyun, LI Cuizhen, QIN Hong, et al. Evaluation of typhoon resilience of distribution network considering grid reconstruction and disaster recovery[J]. Automation of Electric Power Systems, 2018, 42(6): 47-52.
[61]
ROEGE P E, COLLIER Z A, MANCILLAS J, et al. Metrics for energy resilience[J]. Energy Policy, 2014, 72: 249-256.
[62]
田甜, 张骏, 叶樊, 等. 洪涝灾害下配电网三维韧性指标评估体系[J]. 电工电能新技术, 2022, 41(7): 80-88.
摘要
洪涝灾害频发会导致配电网发生大规模停电事故,而评估配电网韧性有助于电力系统运维人员精准预测、应对洪涝灾害造成的配电网故障,降低经济损失。本文首先提出了三维韧性评估指标体系,体系包含状态、架构、时间维度的12个单项指标,可反映出暴雨量、分布式电源配置、重构开关操作次数等因素对配电网韧性评估的影响。采用模糊层次分析法和模糊隶属度函数对配电网韧性进行综合评估,辨识配电网规划、运行、调度薄弱环节。最后针对重庆市渝北某农区配电网进行算例分析,验证本文所述韧性评估体系的有效性和合理性。
TIAN Tian, ZHANG Jun, YE Fan, et al. Three-dimensional resilience index evaluation system for distribution network under flood disaster[J]. Advanced Technology of Electrical Engineering and Energy, 2022, 41(7): 80-88.
Frequent flood disasters will lead to large-scale power outages in the distribution networks, and an effective resilience assessment system can help operation and maintenance personnel accurately predict and deal with distribution network failures caused by flood disasters and reduce economic loss. This paper first proposes a three-dimensional resilience evaluation index system, which contains 12 single indexes of state, architecture and time dimension, and can reflect the influence of rainstorm amount, distributed generation configuration, and number of operation of reconfiguration switch on the resilience evaluation of the distribution network. Then the fuzzy analytic hierarchy process(FAHP) and fuzzy membership function are used to comprehensively evaluate the resilience of the distribution network, and identify the weak links in the distribution network’s planning, operation and dispatching. Finally, a case study of Yubei district in Chongqing is carried out to verify the validity and rationality of the proposed resilience evaluation system.
[63]
陈磊, 邓欣怡, 陈红坤, 等. 电力系统韧性评估与提升研究综述[J]. 电力系统保护与控制, 2022, 50(13): 11-22.
CHEN Lei, DENG Xinyi, CHEN Hongkun, et al. Review of the assessment and improvement of power system resilience[J]. Power System Protection and Control, 2022, 50(13): 11-22.
[64]
PANTELI M, TRAKAS D N, MANCARELLA P, et al. Power systems resilience assessment: hardening and smart operational enhancement strategies[J]. Proceedings of the IEEE, 2017, 105(7): 1202-1213.
[65]
KANDAPERUMAL G, PANDEY S, SRIVASTAVA A. AWR: anticipate, withstand, and recover resilience metric for operational and planning decision support in electric distribution system[J]. IEEE Transactions on Smart Grid, 2022, 13(1): 179-190.
[66]
BAJPAI P, CHANDA S, SRIVASTAVA A K. A novel metric to quantify and enable resilient distribution system using graph theory and choquet integral[J]. IEEE Transactions on Smart Grid, 2018, 9(4): 2918-2929.
[67]
周阳烨, 王国庆, 于雷. 配电网韧性研究现状及展望[J]. 工程研究——跨学科视野中的工程, 2022, 14(3): 171-181.
ZHOU Yangye, WANG Guoqing, YU Lei. Research status and prospect of distribution network resilience[J]. Journal of Engineering Studies, 2022, 14(3): 171-181.
[68]
OUYANG M, DUEÑAS-OSORIO L, XING M. A three-stage resilience analysis framework for urban infrastructure systems[J]. Structural Safety, 2012, 36: 23-31.
[69]
侯祖锋, 王超, 徐春华, 等. 考虑负荷重要程度的配电网韧性提升策略及评估方法[J]. 电力科学与技术学报, 2024, 39(3): 78-85.
HOU Zufeng, WANG Chao, XU Chunhua, et al. Promotion strategy and evaluation method of distribution network resilience considering load importance[J]. Journal of Electric Power Science and Technology, 2024, 39(3): 78-85.
[70]
WANG H Z. A survey of maintenance policies of deteriorating systems[J]. European Journal of Operational Research, 2002, 139(3): 469-489.
[71]
BESSANI M, MASSIGNAN J A D, FANUCCHI R Z, et al. Probabilistic assessment of power distribution systems resilience under extreme weather[J]. IEEE Systems Journal, 2019, 13(2): 1747-1756.
[72]
吴疆, 吕林, 黄媛, 等. 灾害全过程配电网弹性评估方法及提升策略[J]. 电力系统及其自动化学报, 2021, 33(3): 32-42.
WU Jiang, LYU Lin, HUANG Yuan, et al. Evaluation method and promotion strategy for distribution network resilience during the entire process of disaster[J]. Proceedings of the CSU-EPSA, 2021, 33(3): 32-42.
[73]
ISSICABA D, PECAS LOPES J A, DA ROSA M A. Adequacy and security evaluation of distribution systems with distributed generation[J]. IEEE Transactions on Power Systems, 2012, 27(3): 1681-1689.
[74]
ARGHANDEH R, BROWN M, DEL ROSSO A, et al. The local team: leveraging distributed resources to improve resilience[J]. IEEE Power and Energy Magazine, 2014, 12(5): 76-83.
[75]
彭寒梅, 王小豪, 魏宁, 等. 提升配电网弹性的微网差异化恢复运行方法[J]. 电网技术, 2019, 43(7): 2328-2335.
PENG Hanmei, WANG Xiaohao, WEI Ning, et al. Microgrid differentiated recovery operation for enhancing distribution system resilience[J]. Power System Technology, 2019, 43(7): 2328-2335.
[76]
李振坤, 王法顺, 郭维一, 等. 极端天气下智能配电网的弹性评估[J]. 电力系统自动化, 2020, 44(9): 60-68.
LI Zhenkun, WANG Fashun, GUO Weiyi, et al. Resilience evaluation of smart distribution network in extreme weather[J]. Automation of Electric Power Systems, 2020, 44(9): 60-68.
[77]
顾靖达, 李伟, 赵宇鑫, 等. 高温天气下配电网综合韧性评估方法[J]. 电力建设, 2024, 45(9): 123-132.
摘要
随着极端天气导致的自然灾害频发,针对配电网的综合韧性评估难以采用传统可靠性评估方法,提出一种高温天气下配电网综合韧性评估方法。首先,利用核岭回归(kernel ridge regression, KRR)方法,提出基于高温天气片段的配电网节点负荷率估计方法。其次,针对高温天气对配电网产生的影响,建立了高温引起潮流变化导致配电网故障的概率模型,同时考虑了高温对配电网元件的影响,利用脆弱性曲线方法建立了配电网高温天气下元件故障概率模型,进而提出高温天气导致的配电网综合故障概率模型。再次,从捕捉配电网韧性功能曲线特征角度出发,提出配电网综合评估指标模型,并利用泊松分布方法获取配电网韧性场景。最后,在北京某地区双环网配电网系统算例中验证了所提方法和指标的有效性,通过与传统韧性评估指标对比表明了所提配电网综合韧性评估的优越性。
GU Jingda, LI Wei, ZHAO Yuxin, et al. Research on comprehensive resilience assessment method of distribution network under high temperature weather[J]. Electric Power Construction, 2024, 45(9): 123-132.

With the frequent occurrence of extreme weather leading to natural disasters, it is difficult to use traditional reliability assessment methods for the comprehensive resilience assessment of distribution networks. This paper proposed a comprehensive resilience assessment method for distribution networks under high temperature weather. First, using the kernel ridge regression (KRR) method, a distribution network node load rate estimation method based on high-temperature weather segments was proposed. Secondly, in view of the impact of high temperature weather on the distribution network, a probability model of faults caused by changes in power flow caused by high temperature was established. At the same time, the impact of high temperature on the components of the distribution network was considered, and the fragility curve method was used to establish a fault model for distribution network components. And then proposed a comprehensive failure probability model of distribution network caused by high temperature weather. Thirdly, from the perspective of capturing the characteristics of the distribution network’s resilience function curve, a comprehensive evaluation index model AR for the distribution network was constructed,and Poisson distribution method to obtain distribution network resilience scenarios was used. Finally, the effectiveness of the proposed method and indicators was verified in a double-ring distribution network system example in a certain area in Beijing. The superiority of the comprehensive resilience assessment of the distribution network proposed in this paper was demonstrated through a comparative study with traditional resilience assessment indicators.

[78]
左一成, 王元龙, 王晓明, 等. 基于混合动态贝叶斯多准则决策的配电网韧性评估方法[J]. 自动化与仪器仪表, 2024(9): 345-350.
ZUO Yicheng, WANG Yuanlong, WANG Xiaoming, et al. Based A hybrid dynamic Bayesian multi-criteria decision making approach for distribution network resilience assessment[J]. Automation & Instrumentation, 2024(9): 345-350.
[79]
孙彦章, 郭贺宏, 侯哲晖, 等. 国外提升电力系统灵活性措施及对我国的经验启示[J]. 现代管理, 2022, 12(1): 37-44.
SUN Yanzhang, GUO Hehong, HOU Zhehui, et al. Overseas measures to enhance power system flexibility and their implications for china[J]. Modern Management, 2022, 12(1): 37-44.
[80]
司方远, 张宁, 韩英华, 等. 面向多元灵活资源聚合的区域综合能源系统主动调节能力评估与优化: 关键问题与研究架构[J]. 中国电机工程学报, 2024, 44(6): 2097-2119.
SI Fangyuan, ZHANG Ning, HAN Yinghua, et al. Fundamental problems and research framework for assessment and optimization of the functional regulation capacity of the regional integrated energy system under the aggregation of diversified and flexible resources[J]. Proceedings of the CSEE, 2024, 44(6): 2097-2119.
[81]
林卫斌, 宁佳钧, 张凡. 分“三步走” 构建新型电力系统的战略构想[J]. 价格理论与实践, 2022(10): 71-74.
LIN Weibin, NING Jiajun, ZHANG Fan. The strategic conception of constructing a new power system in three steps[J]. Price (Theory & Practice), 2022(10): 71-74.
[82]
麻宁杰, 王华昕, 汤波, 等. 新型电力系统下架空输电线路受极端天气影响的风险评估与运维决策[J]. 电测与仪表, 2025, 62(11): 95-102.
MA Ningjie, WANG Huaxin, TANG Bo, et al. Risk assessment and operation and maintenance decision of overhead transmission lines affected by extreme weather in novel power system[J]. Electrical Measurement & Instrumentation, 2025, 62(11): 95-102.
[83]
丁一, 加鹤萍, 宋永华, 等. 考虑风电与灵活资源互动的智能电网可靠性分析方法评述[J]. 中国电机工程学报, 2016, 36(6): 1517-1526.
DING Yi, JIA Heping, SONG Yonghua, et al. Review of reliability evaluation methods for the smart grid considering the interaction between wind power and flexible demand resources[J]. Proceedings of the CSEE, 2016, 36(6): 1517-1526.
[84]
田新成, 文艺林, 卢泽汉, 等. 多类型灵活资源的建模与分层式协调控制架构[J]. 分布式能源, 2024, 9(1): 10-18.
TIAN Xincheng, WEN Yilin, LU Zehan, et al. Modeling techniques and a hierarchical coordinated control framework for various-type flexible resources[J]. Distributed Energy, 2024, 9(1): 10-18.
[85]
王庆, 赵宏. 灵活可调节性资源参与电力辅助服务成本补偿机制探讨[J]. 价格理论与实践, 2023(5): 87-90, 209.
WANG Qing, ZHAO Hong. Discussion on cost compensation mechanism of flexible and adjustable resources participating in power ancillary services[J]. Price (Theory & Practice), 2023(5): 87-90, 209.
[86]
HOSSEINI S, BARKER K, RAMIREZ-MARQUEZ J E. A review of definitions and measures of system resilience[J]. Reliability Engineering & System Safety, 2016, 145: 47-61.
[87]
李军徽, 董福财, 郭琦, 等. 考虑调峰特性的抽水蓄能电站综合效能量化评估[J]. 全球能源互联网, 2024, 7(5): 567-578.
LI Junhui, DONG Fucai, GUO Qi, et al. Quantitative assessment of the integrated efficiency of pumped storage power stations considering peak shifting characteristics[J]. Journal of Global Energy Interconnection, 2024, 7(5): 567-578.
[88]
LU Y Q, LIU C, WANG K I, et al. Digital twin-driven smart manufacturing: connotation, reference model, applications and research issues[J]. Robotics and Computer-Integrated Manufacturing, 2020, 61: 101837.
[89]
ZHANG B, DEHGHANIAN P, KEZUNOVIC M. Optimal allocation of PV generation and battery storage for enhanced resilience[J]. IEEE Transactions on Smart Grid, 2019, 10(1): 535-545.
[90]
WANG C T, QIAO Y L, WANG Y C, et al. Optimal scheduling of electric-hydrogen hybrid shared energy storage system considering seasonal time scale[J]. Energy, 2025, 330: 136674.
[91]
RANJBAR H, HOSSEINI S H, ZAREIPOUR H. Resiliency-oriented planning of transmission systems and distributed energy resources[J]. IEEE Transactions on Power Systems, 2021, 36(5): 4114-4125.
[92]
ZHANG G, ZHANG F, ZHANG X, et al. Mobile emergency generator planning in resilient distribution systems: a three-stage stochastic model with nonanticipativity constraints[J]. IEEE Transactions on Smart Grid, 2020, 11(6): 4847-4859.
[93]
AHMADI S, SABOOHI Y, VAKILI A. Frameworks, quantitative indicators, characters, and modeling approaches to analysis of energy system resilience: a review[J]. Renewable and Sustainable Energy Reviews, 2021, 144: 110988.
[94]
李亚莎, 张永蘅, 陈俊璋, 等. 计及氢能高效利用和热电灵活输出的综合能源系统源荷灵活运行策略[J]. 广东电力, 2024, 37(4): 49-61.
LI Yasha, ZHANG Yongheng, CHEN Junzhang, et al. Flexible operation strategy for source and load of integrated energy system considering efficient utilization of hydrogen energy and flexible thermal and electric output[J]. Guangdong Electric Power, 2024, 37(4): 49-61.
[95]
Quantitative comparative study on power system flexibility between Beijing-Tianjin-Hebei region and germany[EB/OL]. Carbon Neutrality Sector.
[96]
NASERVAND M, SETAREH M, NEGHAB A P. Dynamic reconfiguration of network structure and connected microgrids for resilience enhancement under storm conditions[C]// 2025 12th Iranian Conference on Renewable Energies and Distributed Generation (ICREDG). IEEE, 2025: 1-6.
[97]
许寅, 和敬涵, 王颖, 等. 韧性背景下的配网故障恢复研究综述及展望[J]. 电工技术学报, 2019, 34(16): 3416-3429.
XU Yin, HE Jinghan, WANG Ying, et al. A review on distribution system restoration for resilience enhancement[J]. Transactions of China Electrotechnical Society, 2019, 34(16): 3416-3429.
[98]
ALAJRASH B H, SALEM M, SWADI M, et al. A comprehensive review of FACTS devices in modern power systems: addressing power quality, optimal placement, and stability with renewable energy penetration[J]. Energy Reports, 2024, 11: 5350-5371.
[99]
RAO C K, SAHOO S K, YANINE F F. A literature review on an IoT-based intelligent smart energy management systems for PV power generation[J]. Hybrid Advances, 2024, 5: 100136.
[100]
齐宁, 程林, 田立亭, 等. 考虑柔性负荷接入的配电网规划研究综述与展望[J]. 电力系统自动化, 2020, 44(10): 193-207.
QI Ning, CHENG Lin, TIAN Liting, et al. Review and prospect of distribution network planning research considering access of flexible load[J]. Automation of Electric Power Systems, 2020, 44(10): 193-207.
[101]
WANG Y J, TIAN J Q, SUN Z D, et al. A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems[J]. Renewable and Sustainable Energy Reviews, 2020, 131: 110015.
[102]
SHI Q X, LIU W X, ZENG B, et al. Enhancing distribution system resilience against extreme weather events: concept review, algorithm summary, and future vision[J]. International Journal of Electrical Power & Energy Systems, 2022, 138: 107860.
[103]
WESSEH P K, LIN B Q. A time-of-use pricing model of the electricity market considering system flexibility[J]. Energy Reports, 2022, 8: 1457-1470.
[104]
刘祎泽, 向月. 计及负荷转移需求响应的低碳数据中心光储容量优化配置[J]. 电力自动化设备, 2024, 44(7): 149-155.
LIU Yize, XIANG Yue. Capacity optimal configuration of photovoltaic storage in low-carbon data centers considering load transfer demand response[J]. Electric Power Automation Equipment, 2024, 44(7): 149-155.
[105]
徐涛, 王樊云. 电力需求响应实施现状综述及展望[J]. 分布式能源, 2024, 9(3): 1-11.
XU Tao, WANG Fanyun. Review and prospect of power demand response implementation[J]. Distributed Energy, 2024, 9(3): 1-11.
[106]
TIWARI A, PINDORIYA N M. Automated demand response in smart distribution grid: a review on metering infrastructure, communication technology and optimization models[J]. Electric Power Systems Research, 2022, 206: 107835.
[107]
XU T, REN Y, GUO L X, et al. Multi-objective robust optimization of active distribution networks considering uncertainties of photovoltaic[J]. International Journal of Electrical Power & Energy Systems, 2021, 133: 107197.
[108]
唐文虎, 聂欣昊, 钱瞳, 等. 面向新型电力系统安全稳定的储能应用技术研究综述与展望[J]. 广东电力, 2024, 37(12): 3-15.
TANG Wenhu, NIE Xinhao, QIAN Tong, et al. Review and prospect on application technologies of energy storage for safety and stability of new power system[J]. Guangdong Electric Power, 2024, 37(12): 3-15.
[109]
李丽, 朱益哲, 郑晓光, 等. 计及孤岛稳定性的主动解列断面搜索算法[J]. 广东电力, 2024, 37(11): 1-8.
LI Li, ZHU Yizhe, ZHENG Xiaoguang, et al. Controlled islanding sections search algorithm considering stability of islands[J]. Guangdong Electric Power, 2024, 37(11): 1-8.
[110]
WANG L Y, LIN J L, DONG H Q, et al. Demand response comprehensive incentive mechanism-based multi-time scale optimization scheduling for park integrated energy system[J]. Energy, 2023, 270: 126893.
[111]
JI C Y, WEI Y, POOR H V. Resilience of energy infrastructure and services: modeling, data analytics, and metrics[J]. Proceedings of the IEEE, 2017, 105(7): 1354-1366.
[112]
WANG M S, MU Y F, LI F X, et al. State space model of aggregated electric vehicles for frequency regulation[J]. IEEE Transactions on Smart Grid, 2019, 11(2): 981-994.
[113]
詹祥澎, 杨军, 韩思宁, 等. 考虑电动汽车可调度潜力的充电站两阶段市场投标策略[J]. 电力系统自动化, 2021, 45(10): 86-96.
ZHAN Xiangpeng, YANG Jun, HAN Sining, et al. Two-stage market bidding strategy of charging station considering schedulable potential capacity of electric vehicle[J]. Automation of Electric Power Systems, 2021, 45(10): 86-96.
[114]
王炜歆, 张露元, 王小君, 等. 计及电动汽车引导和网络重构的配电网负荷恢复策略[J]. 山东电力技术, 2024, 51(8): 18-26.
WANG Weixin, ZHANG Luyuan, WANG Xiaojun, et al. Load restoration strategy of distribution system considering electric vehicle guiding and network reconfiguration[J]. Shandong Electric Power, 2024, 51(8): 18-26.
[115]
CHEN L M, TANG H L, WU J K, et al. A robust optimization framework for energy management of CCHP users with integrated demand response in electricity market[J]. International Journal of Electrical Power & Energy Systems, 2022, 141: 108181.
[116]
曾庆彬, 梁伟强, 张勇军, 等. 考虑多重轮换调控的空调负荷调控潜力评估与控制策略[J]. 电力系统自动化, 2024, 48(4): 123-131.
ZENG Qingbin, LIANG Weiqiang, ZHANG Yongjun, et al. Regulation potential evaluation and control strategy of air conditioning load considering multiple rotation regulation[J]. Automation of Electric Power Systems, 2024, 48(4): 123-131.
[117]
冯云辰, 加鹤萍, 闫敏, 等. 基于风电分时电价的虚拟电厂参与清洁供暖运营优化方法[J]. 中国电力, 2024, 57(1): 51-60.
FENG Yunchen, JIA Heping, YAN Min, et al. Operation optimization method for virtual power plant participating in clean heating based on time-of-use tariff of wind power[J]. Electric Power, 2024, 57(1): 51-60.
[118]
LU L, WEI M K, ZHANG P, et al. Load adjustable potential assessment considering load flexible control and air conditioner load response in extremely hot weather[C]// 2023 8th International Conference on Power and Renewable Energy (ICPRE). IEEE, 2023: 1505-1510.
[119]
聂世豪, 李桐, 陈磊, 等. 投切型温控负荷一次调频策略及电网侧聚合建模[J]. 中国电机工程学报, 2022, 42(S1): 1-11.
NIE Shihao, LI Tong, CHEN Lei, et al. Primary frequency modulation strategy of switching temperature control load and aggregation modeling of power grid side[J]. Proceedings of the CSEE, 2022, 42(S1): 1-11.
[120]
王大为, 金渊, 张倩, 等. 面向新型电力系统的换电站聚合调控技术研究[J]. 高压电器, 2025, 61(11): 71-83.
WANG Dawei, JIN Yuan, ZHANG Qian, et al. Research on aggregated control technology of battery swap station for new power system[J]. High Voltage Apparatus, 2025, 61(11): 71-83.
[121]
齐宁, 程林, 刘锋. 计及决策依赖不确定性的广义储能可信容量评估[J]. 电网技术, 2023, 47(12): 4916-4930.
QI Ning, CHENG Lin, LIU Feng. Capacity credit evaluation of generic energy storage under decision-dependent uncertainty[J]. Power System Technology, 2023, 47(12): 4916-4930.
[122]
王月汉, 刘文霞, 姚齐, 等. 面向配电网韧性提升的移动储能预布局与动态调度策略[J]. 电力系统自动化, 2022, 46(15): 37-45.
WANG Yuehan, LIU Wenxia, YAO Qi, et al. Pre-layout and dynamic scheduling strategy of mobile energy storage for resilience enhancement of distribution network[J]. Automation of Electric Power Systems, 2022, 46(15): 37-45.
[123]
陈实, 郭正伟, 周步祥, 等. 考虑5G基站储能可调度容量的有源配电网协同优化调度方法[J]. 电网技术, 2023, 47(12): 5225-5241.
CHEN Shi, GUO Zhengwei, ZHOU Buxiang, et al. Coordinated optimization scheduling for active distribution networks considering schedulable capacity of energy storage for 5G base stations[J]. Power System Technology, 2023, 47(12): 5225-5241.
[124]
边晓燕, 孙明琦, 董璐, 等. 计及灵活性聚合功率的源-荷分布式协调调度[J]. 电力系统自动化, 2021, 45(17): 89-98.
BIAN Xiaoyan, SUN Mingqi, DONG Lu, et al. Distributed source-load coordinated dispatching considering flexible aggregated power[J]. Automation of Electric Power Systems, 2021, 45(17): 89-98.
[125]
周海浪, 刘一畔, 陈雨果, 等. 考虑灵活性收益的需求侧资源可行域聚合方法[J]. 中国电力, 2022, 55(9): 56-63, 155.
ZHOU Hailang, LIU Yipan, CHEN Yuguo, et al. Demand side feasible region aggregation considering flexibility revenue[J]. Electric Power, 2022, 55(9): 56-63, 155.
[126]
唐坤霆, 周永智, 李宝聚, 等. 考虑热惯性的极端冰雪灾害下综合能源系统韧性提升[J]. 电力系统自动化, 2024, 48(21): 129-137.
TANG Kunting, ZHOU Yongzhi, LI Baoju, et al. Resilience enhancement of integrated energy systems under extreme ice and snow disasters considering thermal inertia[J]. Automation of Electric Power Systems, 2024, 48(21): 129-137.
[127]
何俊, 于华, 邓长虹, 等. 极端天气下基于态势感知的重点区域电网负荷供电保障策略[J]. 高电压技术, 2022, 48(4): 1277-1285.
HE Jun, YU Hua, DENG Changhong, et al. Power supply guarantee strategy for key regional power grid load based on situation awareness in extreme weather[J]. High Voltage Engineering, 2022, 48(4): 1277-1285.
[128]
陈浩, 孙锘祾, 吴桂联, 等. 考虑配电系统灾后响应全过程的开关配置与线路加固方法[J]. 电力系统及其自动化学报, 2024, 36(11): 100-108.
CHEN Hao, SUN Nuoling, WU Guilian, et al. Switch allocation and line hardening method considering whole process of post disaster response of distribution system[J]. Proceedings of the CSU-EPSA, 2024, 36(11): 100-108.
[129]
杨祺铭, 李更丰, 别朝红, 等. 台风灾害下基于V2G的城市配电网弹性提升策略[J]. 电力系统自动化, 2022, 46(12): 130-139.
YANG Qiming, LI Gengfeng, BIE Zhaohong, et al. Vehicle-to-grid based resilience promotion strategy for urban distribution network under typhoon disaster[J]. Automation of Electric Power Systems, 2022, 46(12): 130-139.
[130]
张亚超, 谢仕炜. 面向配电网弹性提升的多时间尺度恢复策略协调优化框架[J]. 电力系统自动化, 2021, 45(18): 28-34.
ZHANG Yachao, XIE Shiwei. Coordinated optimization framework of multi-timescale restoration strategies for resilience enhancement of distribution networks[J]. Automation of Electric Power Systems, 2021, 45(18): 28-34.
[131]
王放放, 杨鹏威, 赵光金, 等. 新型电力系统下火电机组灵活性运行技术发展及挑战[J]. 发电技术, 2024, 45(2): 189-198.
摘要
“双碳”背景下,新能源开始大规模并网发电,但新能源发电的随机性与波动性对电网造成一定冲击,亟需构建新型电力系统。在这一过程中,作为电力系统的基石,传统火电将向提供可靠容量、调峰调频等辅助服务的基础保障性和系统调节性电源转型,火电机组的灵活性改造成为必然选择。分析了构建新型电力系统的阶段性目标及面临的困难与挑战,探讨了现阶段火电机组灵活性改造遇到的问题,结合火电运行数据,分析火电机组配置储能设备的技术途径。研究认为:构建新型电力系统过程中存在着电力系统不稳定、传统火电转型困难、能耗大、环保压力大等问题;火电机组本体的灵活性改造面临调峰能力不足、运行成本较高、负荷响应慢、运行能耗大及安全性不高等问题;通过火电加储能的运行模式会带来较好的经济效益和环境效益。
WANG Fangfang, YANG Pengwei, ZHAO Guangjin, et al. Development and challenge of flexible operation technology of thermal power units under new power system[J]. Power Generation Technology, 2024, 45(2): 189-198.

Under the background of “dual carbon”, new energy sources have begun to be connected to the grid on a large scale. However, the randomness and volatility of new energy generation significantly impact the power grid, making it urgent to build a new power system. As the cornerstone of the power system, traditional thermal power will transform into a basic security and system regulatory power supply, providing reliable capacity, peak regulation and frequency modulation and other auxiliary services. The flexible transformation of thermal power units has become an inevitable choice. The phased objectives, difficulties, and challenges of building a new power system were analyzed, along with the problems encountered in the flexible transformation of thermal power units at the present stage. Combined with thermal power operation data, the technical ways of configuring energy storage equipment for thermal power units were analyzed. The research shows that there are several issues in building a new power system, such as power system instability, difficulties in transforming traditional thermal power, high energy consumption, and environmental pressures. The flexibility transformation of thermal power units faces challenges such as insufficient peak regulation capacity, high operation costs, slow load response, high operation energy consumption, safety concerns, etc. The integration of thermal power and energy storage will bring better economic and environmental benefits.

[132]
周晓敏, 葛少云, 李腾, 等. 极端天气条件下的配电网韧性分析方法及提升措施研究[J]. 中国电机工程学报, 2018, 38(2): 505-513, 681.
ZHOU Xiaomin, GE Shaoyun, LI Teng, et al. Assessing and boosting resilience of distribution system under extreme weather[J]. Proceedings of the CSEE, 2018, 38(2): 505-513, 681.
[133]
SURAPARAJU S K, SAMYKANO M, VENNAPUSA J R, et al. Challenges and prospectives of energy storage integration in renewable energy systems for net zero transition[J]. Journal of Energy Storage, 2025, 125: 116923.
[134]
陈耀红, 罗志坤, 叶文浩, 等. 针对湖南电网的高温热浪风险评估研究[J]. 供用电, 2024, 41(10): 94-100.
CHEN Yaohong, LUO Zhikun, YE Wenhao, et al. Research on risk assessment of high temperature heat wave for Hunan power grid[J]. Distribution & Utilization, 2024, 41(10): 94-100.
[135]
邹必昌. 含分布式发电的配电网重构及故障恢复算法研究[D]. 武汉: 武汉大学, 2012.
ZOU Bichang. Research on reconfiguration and fault recovery algorithm of distribution network with distributed generation[D]. Wuhan: Wuhan University, 2012.
[136]
廖思阳, 皮山泉, 徐箭, 等. 新型电力系统直控式负荷多层级协同调控关键技术综述[J]. 高电压技术, 2023, 49(9): 3669-3685.
LIAO Siyang, PI Shanquan, XU Jian, et al. Review of key technologies for multi-level cooperative regulation of direct-controlled loads in new power systems[J]. High Voltage Engineering, 2023, 49(9): 3669-3685.
[137]
李建林, 康靖悦, 辛迪熙. 新型电力系统储能技术应用研究[J]. 分布式能源, 2024, 9(6): 1-8.
LI Jianlin, KANG Jingyue, XIN Dixi. Application research of new power system energy storage technology[J]. Distributed Energy, 2024, 9(6): 1-8.
[138]
赵冬梅, 徐辰宇, 陶然, 等. 多元分布式储能在新型电力系统配电侧的灵活调控研究综述[J]. 中国电机工程学报, 2023, 43(5): 1776-1799.
ZHAO Dongmei, XU Chenyu, TAO Ran, et al. Review on flexible regulation of multiple distributed energy storage in distribution side of new power system[J]. Proceedings of the CSEE, 2023, 43(5): 1776-1799.

基金

北京市社会科学基金决策咨询项目(24JCC101)

编辑: 曾文静
PDF(2772 KB)

Accesses

Citation

Detail

段落导航
相关文章
AI小编
你好!我是《电力建设》AI小编,有什么可以帮您的吗?

/