台风灾害下综合能源系统薄弱环节识别与韧性调度策略

李凡, 张克, 洪世栋, 王智冬, 刘栋, 秦继朔, 秦博宇

电力建设 ›› 2026, Vol. 47 ›› Issue (1) : 125-137.

PDF(2580 KB)
PDF(2580 KB)
电力建设 ›› 2026, Vol. 47 ›› Issue (1) : 125-137. DOI: 10.12204/j.issn.1000-7229.2026.01.010
调度运行

台风灾害下综合能源系统薄弱环节识别与韧性调度策略

作者信息 +

Vulnerability Identification and Resilience Scheduling Strategy for Integrated Energy Systems Under Typhoon Disasters

Author information +
文章历史 +

摘要

【目的】近年来,小概率、高损失的极端自然灾害频发,高比例新能源接入下的综合能源系统调度策略存在自适应优化能力不足,难以面对非预期不确定冲击的问题。为此,提出了台风灾害下综合能源系统薄弱环节识别方法与灾前韧性调度策略。【方法】首先,基于广义相量法构建了综合能源系统动态模型,刻画异质能流动态特性;其次,构建台风场景下线路故障-恢复概率模型,生成综合能源系统受灾运行场景;最后,从系统性能损失与潮流转移风险角度提出系统薄弱环节辨识方法,构建兼顾灵活性提升与潮流优化的灾前韧性调度策略。【结果】算例结果表明:在优化后的韧性调度方案中,等效储能容量提升31.68%,电网关键支路潮流负载率平均降低56.58%,系统整体失负荷量减少26.27%。【结论】所提方法实现了对兼具风险性与重要性的极端场景薄弱环节的辨识,显著提升了综合能源系统抗灾保供能力。

Abstract

[Objective] Low-probability,high-impact natural disasters have become increasingly frequent. Integrated energy systems with high renewable penetration often lack the self-adaptive optimization capability needed to manage unexpected disturbances. This paper proposes a vulnerability identification framework and a pre-disaster resilience-oriented dispatch strategy for integrated energy system under typhoon disasters. [Methods] A dynamic integrated energy systems model is constructed using a generalized phasor approach to represent heterogeneous energy flows. A line fault-restoration probability model under typhoon scenarios is developed to generate disaster-operational states. A vulnerability identification method is then introduced from the perspectives of system performance loss and power-flow transfer risk. Finally,a pre-disaster resilience scheduling strategy is formulated by integrating flexibility enhancement with power-flow optimization. [Conclusions] Simulation results show that the optimized resilience-oriented dispatch strategy increases equivalent energy-storage capacity by 31.68%,reduces the average loading of key transmission branches by 56.58%,and decreases total load loss by 26.27%. [Conclusions] The proposed framework effectively identifies high-risk,critical vulnerabilities under extreme scenarios and substantially enhances the disaster resilience and supply security of integrated energy systems.

关键词

综合能源系统 / 薄弱环节识别 / 韧性调度策略 / 改进潮流熵 / 灵活调节裕度

Key words

integrated energy systems / vulnerability identification / resilience scheduling strategy / improved power flow entropy / flexible adjustment margin

引用本文

导出引用
李凡, 张克, 洪世栋, . 台风灾害下综合能源系统薄弱环节识别与韧性调度策略[J]. 电力建设. 2026, 47(1): 125-137 https://doi.org/10.12204/j.issn.1000-7229.2026.01.010
LI Fan, ZHANG Ke, HONG Shidong, et al. Vulnerability Identification and Resilience Scheduling Strategy for Integrated Energy Systems Under Typhoon Disasters[J]. Electric Power Construction. 2026, 47(1): 125-137 https://doi.org/10.12204/j.issn.1000-7229.2026.01.010
中图分类号: TM732   

参考文献

[1]
别朝红, 林超凡, 李更丰, 等. 能源转型下弹性电力系统的发展与展望[J]. 中国电机工程学报, 2020, 40(9): 2735-2745.
BIE Zhaohong, LIN Chaofan, LI Gengfeng, et al. Development and prospect of resilient power system in the context of energy transition[J]. Proceedings of the CSEE, 2020, 40(9): 2735-2745.
[2]
WANG H Z, QIN B Y, HONG S D, et al. Enhanced GAN-based joint wind-solar-load scenario generation with extreme weather labelling[J]. IEEE Transactions on Smart Grid, 2025, 16(5): 4213-4224.
[3]
许寅, 吴翔宇, 王颖. 极端事件下基于城市分区电网孤岛运行的韧性提升技术研究及展望[J]. 供用电, 2024, 41(8): 45-53.
XU Yin, WU Xiangyu, WANG Ying. Research and prospect on resilience enhancement technology based on islanded operation of urban partitioned power grids under extreme events[J]. Distribution & Utilization, 2024, 41(8): 45-53.
[4]
谢培坤, 李谅, 施元杰, 等. 考虑交通网影响的移动储能灾前-灾后优化调度[J]. 电力建设, 2025, 46(5): 123-135.
XIE Peikun, LI Liang, SHI Yuanjie, et al. Optimal pre-disaster and post-disaster scheduling of mobile energy storage considering the influence of transportation network[J]. Electric Power Construction, 2025, 46(5): 123-135.
[5]
杜维, 杜兆斌, 范国晨, 等. 极端天气下考虑分布式电源可用程度的配电网多源协同恢复策略[J]. 广东电力, 2024, 37(7): 88-97.
DU Wei, DU Zhaobin, FAN Guochen, et al. Multi-source cooperative restoration strategy of distribution network considering availability of distributed generation in extreme weather[J]. Guangdong Electric Power, 2024, 37(7): 88-97.
[6]
LI H Y, QIN B Y, WANG S H, et al. Data-driven two-stage scheduling of multi-energy systems for operational flexibility enhancement[J]. International Journal of Electrical Power & Energy Systems, 2024, 162: 110230.
[7]
彭穗, 李峰, 王彦峰, 等. 考虑极热极寒日的高比例风电电力系统备用容量规划[J]. 广东电力, 2025, 38(10): 1-13.
PENG Sui, LI Feng, WANG Yanfeng, et al. Reserve capacity planning for high-proportion wind power systems considering extremely hot and cold days[J]. Guangdong Electric Power, 2025, 38(10): 1-13.
[8]
YANG Y H, TANG W H, LIU Y, et al. Quantitative resilience assessment for power transmission systems under typhoon weather[J]. IEEE Access, 2018, 6: 40747-40756.
[9]
姜涛, 唐少南, 李雪, 等. 应对台风影响的海岛微网群韧性全过程提升[J]. 中国电机工程学报, 2022, 42(18): 6625-6641.
JIANG Tao, TANG Shaonan, LI Xue, et al. Resilience boosting strategy for island microgrid clusters against typhoons[J]. Proceedings of the CSEE, 2022, 42(18): 6625-6641.
[10]
李涛, 李硕, 刘建初, 等. 基于真实台风情景的配电网快速重构与灵活孤岛划分策略[J]. 供用电, 2025, 42(8): 80-87.
LI Tao, LI Shuo, LIU Jianchu, et al. Rapid reconfiguration and flexible island partition strategies for power distribution networks based on real typhoon scenarios[J]. Distribution & Utilization, 2025, 42(8): 80-87.
[11]
罗萍萍, 盛奥, 林济铿, 等. 基于CGAN台风气象下负荷场景生成[J]. 中国电力, 2025, 58(2): 176-185.
LUO Pingping, SHENG Ao, LIN Jikeng, et al. CGAN-based load scenario generation under typhoon weather[J]. Electric Power, 2025, 58(2): 176-185.
[12]
谭静, 王东, 张英华, 等. 台风灾害下电网多维韧性评估研究[J]. 山东电力技术, 2024, 51(3): 27-35.
TAN Jing, WANG Dong, ZHANG Yinghua, et al. Multidimensional resilience assessment of power grids under typhoon disasters[J]. Shandong Electric Power, 2024, 51(3): 27-35.
[13]
DEHGHANI N L, SHAFIEEZADEH A. Multi-stage resilience management of smart power distribution systems: a stochastic robust optimization model[J]. IEEE Transactions on Smart Grid, 2022, 13(5): 3452-3467.
[14]
STANKOVIĆ A M, TOMSOVIC K L, DE CARO F, et al. Methods for analysis and quantification of power system resilience[J]. IEEE Transactions on Power Systems, 2023, 38(5): 4774-4787.
[15]
胡博, 谢开贵, 邵常政, 等. 双碳目标下新型电力系统风险评述: 特征、指标及评估方法[J]. 电力系统自动化, 2023, 47(5): 1-15.
HU Bo, XIE Kaigui, SHAO Changzheng, et al. Commentary on risk of new power system under goals of carbon emission peak and carbon neutrality: characteristics, indices and assessment methods[J]. Automation of Electric Power Systems, 2023, 47(5): 1-15.
[16]
肖智文, 王国庆, 朱建明, 等. 面向突发事件的电网韧性能力评价及构建方法[J]. 系统工程理论与实践, 2019, 39(10): 2637-2645.
摘要
近年来,我国对电力系统面对突发事件时的性能表现提出了更为严格的要求,利用韧性的概念构建电网系统能够实现应急全周期内避免损失.文章利用应急管理理论分阶段刻画韧性的特征,在描述突发事件下电网韧性能力的同时提出了一种定量评价电网韧性的方法,它侧重于电网在突发事件发生后随着时间的推移维持稳定、抵抗中断、恢复性能的调整能力:利用给出的韧性评价指数结合电网特有的包括运行模式、组件物理强度和网络拓扑结构在内的电网特征,针对性地描述了能够增强电网韧性的措施.最后举例选取N-1准则措施利用PSCAD软件进行仿真模拟,利用韧性评价指数说明N-1措施能够增强电网韧性的同时,验证了韧性评价指数的合理性.电网实例引用IEEE14节点模型.
XIAO Zhiwen, WANG Guoqing, ZHU Jianming, et al. Method for assessing and constructing power system resilience under emergency events[J]. Systems Engineering-Theory & Practice, 2019, 39(10): 2637-2645.
[17]
李钰, 莫一夫, 王隆, 等. 面向韧性提升的智能巡检与灾损评估应用综述[J]. 广东电力, 2025, 38(9): 68-79.
LI Yu, MO Yifu, WANG Long, et al. Application review of intelligent inspection and disaster damage assessment toward enhancing power system resilience[J]. Guangdong Electric Power, 2025, 38(9): 68-79.
[18]
GAO S, MA J, CHEN Z M, et al. Ranking the spreading ability of nodes in complex networks based on local structure[J]. Physica A: Statistical Mechanics and Its Applications, 2014, 403: 130-147.
[19]
龚思丞, 黄文焘, 邰能灵, 等. 基于复杂网络的电热微网拓扑综合评估方法[J]. 电力系统自动化, 2019, 43(23): 173-184.
GONG Sicheng, HUANG Wentao, TAI Nengling, et al. Complex network based comprehensive evaluation method of topology for electro-thermal microgrid[J]. Automation of Electric Power Systems, 2019, 43(23): 173-184.
[20]
韩畅, 林振智, 杨莉, 等. 台风条件下区域电力系统的重要线路多维度辨识[J]. 电力系统自动化, 2018, 42(15): 118-125.
HAN Chang, LIN Zhenzhi, YANG Li, et al. Multi-dimensional critical line identification for regional power systems under typhoon[J]. Automation of Electric Power Systems, 2018, 42(15): 118-125.
[21]
南璐, 何川, 刘天琪. 考虑风光出力不确定性的电-气互联系统脆弱线路辨识[J]. 中国电机工程学报, 2022, 42(2): 524-537.
NAN Lu, HE Chuan, LIU Tianqi. Vulnerable lines identification of integrated electricity and natural gas systems considering wind and photovoltaic generation uncertainties[J]. Proceedings of the CSEE, 2022, 42(2): 524-537.
[22]
ZHAO Y X, LIU S Y, LIN Z Z, et al. Identification of critical lines for enhancing disaster resilience of power systems with renewables based on complex network theory[J]. IET Generation, Transmission & Distribution, 2020, 14(20): 4459-4467.
[23]
潘松, 李长城, 康海鹏, 等. 考虑停运概率熵和网架结构熵的电网关键线路辨识方法[J]. 电力系统自动化, 2025, 49(1): 139-149.
PAN Song, LI Changcheng, KANG Haipeng, et al. Identification method for key lines of power grid considering outage probability entropy and grid structure entropy[J]. Automation of Electric Power Systems, 2025, 49(1): 139-149.
[24]
徐强, 邱显欣, 何芊慧, 等. 多源数据驱动的核心城区配电网风险画像与韧性提升策略[J]. 广东电力, 2025, 38(9): 44-51.
XU Qiang, QIU Xianxin, HE Qianhui, et al. Risk profile and resilience enhancement strategies for distribution networks in core urban areas driven by multi-source data[J]. Guangdong Electric Power, 2025, 38(9): 44-51.
[25]
时珊珊, 魏新迟, 苑子俊, 等. 面向台风灾害下韧性提升的输电通道强化方法[J]. 中国电力, 2025, 58(4): 245-250.
SHI Shanshan, WEI Xinchi, YUAN Zijun, et al. Reinforcement method for transmission corridor to enhance resilience against typhoon disasters[J]. Electric Power, 2025, 58(4): 245-250.
[26]
YANG X, LIU X H, ZHAO T Y, et al. Resilient unit commitment for transmission lines hardening under endogenous uncertainties[J]. IEEE Transactions on Power Systems, 2025, 40(1): 204-217.
[27]
WANG C, LI G F, WAN C, et al. Uncertainty-inflicted event-driven resilient recovery for distribution systems: a semi-Markov decision process approach[J]. IEEE Transactions on Power Systems, 2025, 40(1): 368-380.
[28]
SHAFIEI K, ZADEH S G, HAGH M T. Planning for a network system with renewable resources and battery energy storage, focused on enhancing resilience[J]. Journal of Energy Storage, 2024, 87: 111339.
[29]
MAHZARNIA M, MOGHADDAM M P, BABOLI P T, et al. A review of the measures to enhance power systems resilience[J]. IEEE Systems Journal, 2020, 14(3): 4059-4070.
[30]
NAJAFI TARI A, SEPASIAN M S, TOURANDAZ KENARI M. Resilience assessment and improvement of distribution networks against extreme weather events[J]. International Journal of Electrical Power & Energy Systems, 2021, 125: 106414.
[31]
张亚超, 易杨, 胡志鹏, 等. 基于分布鲁棒优化的电-气综合能源系统弹性提升策略[J]. 电力系统自动化, 2021, 45(13): 76-84.
ZHANG Yachao, YI Yang, HU Zhipeng, et al. Resilience enhancement strategy of electricity-gas integrated energy system based on distributionally robust optimization[J]. Automation of Electric Power Systems, 2021, 45(13): 76-84.
[32]
ABDELMALAK M, BENIDRIS M. Proactive generation redispatch to enhance power system resilience during hurricanes considering unavailability of renewable energy sources[J]. IEEE Transactions on Industry Applications, 2022, 58(3): 3044-3053.
[33]
HUANG G, WANG J H, CHEN C, et al. Integration of preventive and emergency responses for power grid resilience enhancement[J]. IEEE Transactions on Power Systems, 2017, 32(6): 4451-4463.
[34]
HE Z H, LI Z Y, XIAO X Y, et al. Dynamic resilience region-based proactive scheduling for enhancing the power system resilience[J]. IEEE Transactions on Power Systems, 2025, 40(3): 2336-2348.
[35]
SANG Y R, XUE J Y, SAHRAEI-ARDAKANI M, et al. An integrated preventive operation framework for power systems during hurricanes[J]. IEEE Systems Journal, 2020, 14(3): 3245-3255.
[36]
唐文虎, 韦慈航, 柳洲, 等. 考虑负荷削减公平性的配电网两阶段韧性提升策略[J]. 广东电力, 2025, 38(9): 52-67.
TANG Wenhu, WEI Cihang, LIU Zhou, et al. Two-stage resilience enhancement strategy for distribution networks considering fairness of load shedding[J]. Guangdong Electric Power, 2025, 38(9): 52-67.
[37]
何剑军, 吴龙腾, 吴杰康, 等. 极端灾害下配电网用户侧柔性资源协同调控模型[J]. 广东电力, 2025, 38(4): 58-69.
HE Jianjun, WU Longteng, WU Jiekang, et al. Collaborative regulation and control model for user side flexible resources in distribution networks under extreme disasters[J]. Guangdong Electric Power, 2025, 38(4): 58-69.
[38]
祝士焱, 许寅, 和敬涵, 等. 基于多微电网投影的配电系统协调恢复方法[J]. 中国电力, 2024, 57(9): 224-230.
ZHU Shiyan, XU Yin, HE Jinghan, et al. A restoration method for distribution system based on projection of multiple microgrids[J]. Electric Power, 2024, 57(9): 224-230.
[39]
赖业宁, 孙仲卿, 陆志平, 等. 考虑储能资源聚合参与的电网优化运行与韧性提升策略[J]. 中国电力, 2025, 58(2): 57-65.
LAI Yening, SUN Zhongqing, LU Zhiping, et al. Power grid optimization operation and resilience improvement strategy considering the participation of energy storage resource aggregation[J]. Electric Power, 2025, 58(2): 57-65.
[40]
史亚帆, 许寅, 吴翔宇. 面向韧性提升的虚拟振荡器并网运行控制方法[J]. 山东电力技术, 2024, 51(8): 10-17.
SHI Yafan, XU Yin, WU Xiangyu. Resilience-enhancing control method for grid-connected virtual oscillator[J]. Shandong Electric Power, 2024, 51(8): 10-17.
[41]
YIN G X, WANG B, ZHAO H T, et al. On the real-time quantification of flexibility provided by district heating networks considering dynamic temperature distribution[J]. IEEE Transactions on Sustainable Energy, 2022, 13(3): 1666-1680.
[42]
BATTS M E, SIMIU E, RUSSELL L R. Hurricane wind speeds in the United States[J]. Journal of the Structural Division, 1980, 106(10): 2001-2016.
[43]
LIU X N, HOU K, JIA H J, et al. A planning-oriented resilience assessment framework for transmission systems under typhoon disasters[J]. IEEE Transactions on Smart Grid, 2020, 11(6): 5431-5441.
[44]
KANCHERLA S, DOBSON I. Heavy-tailed transmission line restoration times observed in utility data[J]. IEEE Transactions on Power Systems, 2018, 33(1): 1145-1147.
[45]
SUN Q R, WU Z, GU W, et al. Resilience assessment for integrated energy system considering gas-thermal inertia and system interdependency[J]. IEEE Transactions on Smart Grid, 2024, 15(2): 1509-1524.
[46]
曹冬志, 姚良忠, 袁荣湘, 等. 一种适用多辅助服务场景调节需求的柔性负荷资源动态聚合方法[J/OL]. 全球能源互联网, 1-15 [2025-11-26]. https://link.cnki.net/urlid/10.1550.tk.20250228.1326.002.
CAO Dongzhi, YAO Liangzhong, YUAN Rongxiang, et al. A dynamic aggregation method for flexible load resources participating in demand response considering multiple ancillary service scenarios regulation requirements[J/OL]. Journal of Global Energy Interconnection, 1-15[2025-11-26]. https://link.cnki.net/urlid/10.1550.tk.20250228.1326.002.
[47]
WANG S Y, WU W C, LIN C H, et al. A dynamic equivalent energy storage model of natural gas networks for joint optimal dispatch of electricity-gas systems[J]. IEEE Transactions on Sustainable Energy, 2024, 15(1): 621-632.

基金

新型电力系统科技攻关登高行动计划2024年专项重大科技项目(1400-202456361A-3-1-DG)

编辑: 孙静琳
PDF(2580 KB)

Accesses

Citation

Detail

段落导航
相关文章
AI小编
你好!我是《电力建设》AI小编,有什么可以帮您的吗?

/