基于多端直流网络潮流分布的变斜率下垂控制策略

苗丹, 刘天琪, 王顺亮

电力建设 ›› 2017, Vol. 38 ›› Issue (3) : 19.

PDF(1873 KB)
PDF(1873 KB)
电力建设 ›› 2017, Vol. 38 ›› Issue (3) : 19. DOI: 10.3969/j.issn.1000-7229.2017.03.003
智能电网

 基于多端直流网络潮流分布的变斜率下垂控制策略

  •  苗丹, 刘天琪, 王顺亮
     
作者信息 +

 Variable-Slope Droop Control Strategy Based on Power Flow Distribution of Multiterminal DC Grid

  •  MIAO Dan, LIU Tianqi, WANG Shunliang
Author information +
文章历史 +

摘要

 柔性直流输电(flexible AC transmission system,FACTS)是大规模可再生能源并网的有效技术手段。下垂控制作为多端直流输电系统(multi-terminal high voltage direct current transmission, MTDC)主要的站间协调控制方式,存在直流功率利用率低、直流电压质量较差、易造成系统过电压等缺点。为有效改进下垂控制的控制性能,首先推导直流网络通用潮流计算算法,该算法适用于换流站任意控制方式组合的直流网络。基于潮流计算结果,提出变斜率下垂控制策略。该策略制定了3种控制模式,根据不同需求,通过相关计算,重新分配下垂系数。最后,在PSCAD/EMTDC中搭建4端直流网络进行时域仿真验证。结果表明,所提出的变斜率下垂控制策略能有效减小稳态误差,并有效预防过电压。
 

Abstract

 Flexible direct current transmission system (FACTS) is an effective technique for large scale renewable energy integration. As the main coordinated control between stations in multi-terminal high voltage direct current transmission (MTDC) system, droop control has some disadvantages such as low utilization rate of DC power, poor quality of DC voltage and causing over-voltage easily. To improve the control performance of droop control, firstly, this paper derives the general power flow calculation method for DC grid, which is applicable for any control combination of DC grid in convertor station. Then, this paper proposes an improved droop control strategy based on power flow calculation. According to different needs, the strategy consists of 3 control modes recalculating droop coefficient. Finally, a 4-terminal DC network is developed in PSCAD/EMTDC and time-domain simulation is performed. The results show that the proposed variable-slope droop control strategy can effectively reduce the steady-state error and prevent overvoltage.
 

关键词

  / 多端柔性直流输电(VSC-MTDC) / 模块化多电平变流器(MMC) / 潮流计算 / 下垂控制

Key words

 VSC-MTDC / modular multilevel converter (MMC) / power flow / droop control

引用本文

导出引用
苗丹, 刘天琪, 王顺亮.  基于多端直流网络潮流分布的变斜率下垂控制策略[J]. 电力建设. 2017, 38(3): 19 https://doi.org/10.3969/j.issn.1000-7229.2017.03.003
MIAO Dan, LIU Tianqi, WANG Shunliang.  Variable-Slope Droop Control Strategy Based on Power Flow Distribution of Multiterminal DC Grid[J]. Electric Power Construction. 2017, 38(3): 19 https://doi.org/10.3969/j.issn.1000-7229.2017.03.003
中图分类号: TM 72   

参考文献

 [1]〖HJ*3/4〗汤广福, 罗湘, 魏晓光. 多端直流输电与直流电网技术[J]. 中国电机工程学报, 2013, 33(10): 8-17.
TANG Guangfu, LUO Xiang, WEI Xiaoguang. Multi-terminal HVDC and DC-grid technology[J]. Proceedings of the CSEE, 2013, 33 (10): 8-17.
 
[2]张文亮, 汤涌, 曾南超. 多端高压直流输电技术及应用前景[J]. 电网技术, 2010, 34 (9): 1-6.
ZHANG Wenliang, TANG Yong, ZENG Nanchao. Multi-terminal HVDC transmission technologies and its application prospects in China[J]. Power System Technology, 2010, 34(9): 1-6.
 
[3]孙黎霞, 陈宇, 宋洪刚, 等. 适用于VSC-MTDC的改进直流电压下垂控制策略[J]. 电网技术, 2016 , 40(4): 1037-1043.
SUN Lixia, CHEN Yu, SONG Honggang, et al. Improved voltage droop control strategy for VSC-MTDC[J]. Power System Technology, 2016, 40(4): 1037-1043.
 
[4]RENEDO J, GARCIA-CERRADA A, ROUCO L. Active power control strategies for transient stability enhancement of AC/DC grids with VSC-HVDC multi-terminal systems[J]. IEEE Transactions on Power Systems, 2016,31(6):4595-4604.
 
[5]韦延方, 卫志农, 孙国强, 等. 一种新型的高压直流输电技术——MMC-HVDC[J]. 电力自动化设备, 2012, 32(7): 1-9.
WEI Yanfang, WEI Zhinong, SUN Guoqiang, et al. A new technology for high voltage direct current transmission: MMC-HVDC[J]. Electric Power Automation Equipment, 2012, 32(7): 1-9.
 
[6]阎发友, 汤广福, 贺之渊, 等. 基于 MMC 的多端柔性直流输电系统改进下垂控制策略[J]. 中国电机工程学报, 2014, 34(3): 397-404.
YAN Fayou, TANG Guangfu, HE Zhiyuan, et al. An improved droop control strategy for MMC-based VSC-MTDC systems[J]. Proceedings of the CSEE, 2014, 34(3): 397-404.
 
[7]唐庚, 徐政, 薛英林. LCC-MMC混合高压直流输电系统[J]. 电工技术学报, 2013, 28(10): 301-310.
TANG Geng, XU Zheng, XUE YingLin. A LCC-MMC hybrid HVDC transmission system[J]. Transactions of China Electrotechnical Society, 2013, 28(10): 301-310.
 
[8]PERALTA J,SAAD H,DENNETIERE S,et al.Detailed and averaged models for a 401-level MMC-HVDC system[C]// 2013 Power and Energy Society General Meeting (PES),Vancouver:IEEE,2013:1-1. 
 
[9]VRANA T K, BEERTEN J, BELMANS R, et al. A classification of DC node voltage control methods for HVDC grids[J]. Electric Power Systems Research, 2013, 103(8): 137-144.
 
[10]PINTO R T,RODRIGUES S F,BAUER P,et al.Comparison of direct voltage control methods of multi-terminal DC (MTDC) networks through modular dynamic models[C]// Proceedings of the 2011 14th European Conference on Power Electronics and Applications, Birmingham :IEEE,2011:1-10.
 
[11]HAILESELASSIE T M, UHLEN K. Impact of DC line voltage drops on power flow of MTDC using droop control[J]. IEEE Transactions on Power Systems, 2012, 27(3): 1441-1449.
 
[12]罗永捷, 李耀华, 王平, 等. 多端柔性直流输电系统直流电压自适应下垂控制策略研究[J]. 中国电机工程学报, 2016,36(10): 2588-2599.
LUO Yongjie, LI Yaohua, WANG Ping, et al. DC voltage adaptive droop control of multi-terminal HVDC systems[J]. Proceedings of the CSEE, 2016,36(10): 2588-2599.
 
[13]喻锋, 王西田, 解大. 多端柔性直流下垂控制的功率参考值修正方法[J]. 电力自动化设备, 2015, 35(11): 117-122.
YU Feng, WANG Xitian, XIE Da. Power reference correction method for droop control of VSC-MTDC system[J]. Electric Power Automation Equipment, 2015, 35(11): 117-122.
 
[14]ABDEL-KHALIK A S, ABU-ELANIEN A E B, ELSEROUGI A A, et al. A droop control design for multi-terminal HVDC of offshore wind farms with three-wire bipolar transmission lines[J]. IEEE Transactions on Power Systems, 2015: 1-12.
 
[15]ABDELWAHED M A,ELSAADANY E.Adaptive droop based power sharing control algorithm for offshore multi-terminal VSC-HVDC transmission[C]// 2015 IEEE Electrical Power and Energy Conference (EPEC), London:IEEE,2015:67-72.
 
[16]刘盼盼, 荆龙, 吴学智, 等. 一种MMC-MTDC系统新型协调控制策略[J]. 电网技术, 2016,40(1): 64-69. 
LIU Panpan, JING Long, WU Xuezhi, et al. A new coordinated control strategy for MMC-MTDC system and stability analysis[J]. Power System Technology, 2016,40(1): 64-69.
 
[17]梁海峰, 李庚银, 周明, 等. 电压源换流器高压直流输电的动态等效电路及其特性分析[J]. 中国电机工程学报, 2010,30(13): 53-60.
LIANG Haifeng, LI Gengyin, ZHOU Ming, et al. Dynamic equivalent circuit of VSC-HVDC and its performance analysis[J]. Proceedings of the CSEE, 2010,30(13): 53-60.
 
[18]PRIETO-ARAUJO E, BIANCHI F D, JUNYENT-FERRA, et al. Methodology for droop control dynamic analysis of multi-terminal VSC-HVDC grids for offshore wind farms[J]. IEEE Transactions on Power Delivery, 2011, 26(4): 2476-2485.
 
[19]BEERTEN J,ERIKSSON R,BELMANS R.Influence of DC voltage droop settings on AC system stability[C]// 10th IET International Conference on AC and DC Power Transmission (ACDC 2012), Birmingham:IET, 2012:1-5.
 
[20]HAILESELASSIE T M,UHLEN K.Precise control of power flow in multi-terminal VSC-HVDCs using DC voltage droop control[C]// 2012 IEEE Power and Energy Society General Meeting, San Diego:IEEE,2012:1-9.
 
[21]全国电压电流等级和频率标准化技术委员会.电能质量 供电电压偏差:GB/T 12325—2008 [S].北京:中国标准出版社,2008.
 

基金

 国家电网公司科技项目(SGRIZLKJ [2015] 457)

PDF(1873 KB)

Accesses

Citation

Detail

段落导航
相关文章
AI小编
你好!我是《电力建设》AI小编,有什么可以帮您的吗?

/