PDF(861 KB)
PDF(861 KB)
PDF(861 KB)
钙基吸收剂捕集1 000 MW机组烟气中CO2的性能分析
CO2 Capture Performance from Flue Gas in 1 000 MW Unit with Using Ca-Based Sorbent
针对某1 000 MW超临界机组,建立了基于钙基吸收剂循环煅烧/碳酸化法捕集CO2的系统流程,研究了弛放率、气固分离效率、钙碳摩尔比对煅烧能耗、发电热效率及循环固体质量流量的影响。结果表明:引入碳捕集系统后,机组发电热效率为34.6%,较设计值降低了9.6%;将碳捕集系统回收热量用于发电,电厂净输出功率增加了113.4 MW;随着弛放率的提高,发电热效率、循环固体物料质量流量均下降,煅烧能耗先下降后升高;随着气固分离效率的提高,发电热效率、循环固体物料质量流量均升高,煅烧能耗先下降后升高;随着钙碳摩尔比的提高,煅烧能耗、发电热效率和循环固体物料质量流量均升高。
A system process of Cyclic Calcinations/Carbonation based on the method of calcium-based sorbents was proposed for the CO2 capture in a 1 000 MW supercritical power unit. The impact of purge rate, the gas-solid separation efficiency and the molar ratio of Ca and C on the energy consumption of calcination, the power generation thermal efficiency and the flow rate of circulating solids was studied. The results show that: after the introduction of carbon capture systems, the thermal efficiency of electricity generation for the unit is 34.6%, which is 9.6 % lower than the designed value; while after using heat recovery of carbon capture system to generate electricity, the net increase in the output power of the power plant reaches 113.4MW. With the increase of purge rate, the thermal power generation efficiency and the mass flow of solid circulating material decrease, and the energy consumption of calcination decreases first and then increases. With the increase of the efficiency of gas-solid separation, the thermal power generation efficiency and the mass flow of solid circulating material increase, and the energy consumption of calcination decreases first and then increases. With the increase of the mole ratio of Ca and C, the energy consumption of calcination, the thermal power generation efficiency and the mass flow of solid circulating material all increase.
[1]China Electricity Council. The current status of air polution control for coal-fired power plants in China 2009[M]. Beijing: China Electric Power Press, 2009.
[2]Davison J. Performance and costs of power plants with capture and storage of CO2[J]. Energy, 2007, 32(7): 1163-1176.
[3]乔春珍, 肖云汉, 田文栋, 等. 钙基CO2吸收剂的循环特性[J]. 化工学报, 2006, 57(12): 2953-2959.
Qiao Chunzhen, Xiao Yunhan, Tian Wendong, et al. Repetitive calcination-carbonation capability of Ca-based CO2 absorbent[J]. Journal of Chemical Industry and Engineering, 2006, 57(12): 2953-2959.
[4]陈鸿伟. 蒸汽活化钙基吸收剂联合脱碳脱硫特性[J]. 化工学报, 2012, 63(8): 2566-2575.
Chen Hongwei. Sequential SO2/CO2 capture using CaO-based sorbents reactivated by stream[J]. Journal of Chemical Industry and Engineering, 2012, 63(8): 2566-2575.
[5]Wang W, Ramkumar S, Wong D, et al. Simulations and process analysis of the carbonation-calcination reaction process with intermediate hydration[J]. Fuel, 2012, 92(1): 94-106.
[6]Wang W, Ramkumar S, Fan L S. Energy penalty of CO2 capture for the carbonation-calcination reaction(CCR) process: parametric effects and comparisons with alternative processes[J]. Fuel, 2013, 104: 561-574.
[7]张学镭, 高沛. 钙基吸收剂捕集火电机组烟中CO2的热力性能分析[J]. 动力工程学报, 2014, 34(1): 63-69.
Zhang Xuelei, Gao Pei. Thermodynamic analysis of CO2 capture from coal-fired flue gas using Ca-based sorbent[J]. Journal of Chinese Society of Power Engineering, 2014, 34(1): 63-69.
[8]Wang W, Ramkumar S, Li S, et al. Sub-pilot demonstration of the carbontion-calcination reaction (CCR) process: High temperature CO2 and sulfur capture from coal fired power plants[J]. Industrial & Engineering Chemistry Research, 2010, 49: 5094–101.
[9]李英杰, 孙荣岳, 刘红玲, 等. 硫酸化反应对天然CO2载体CaO高温循环碳捕集的影响[J]. 煤炭学报, 2011, 36(7): 1206-1211.
Li Yingjie, Sun Rongyue, Liu Hongling, et al. Effect of sulfation on crabon capture using natural CO2 carrier CaO looping cycle at high temperature[J]. Journal of China Coal Society, 2011, 36(7): 1206-1211.
[10]Wang A, Deshpande N, Fan L S. Steam hydration of calcium oxide for solid sorbent based CO2 capture: Effects of sintering and fluidized bed reactor behavior[J]. Energy & Fuels, 2014.
[11]Cordero J M, Alonso M, Arias B, et al. Sulfation performance of CaO purges derived from calcium looping CO2 capture systems[J]. Energy & Fuels, 2014, 28(2): 1325-1330.
[12]陈海平, 王中平. 基于Aspen Plus的CCRs碳捕集系统过程模拟[J]. 动力工程学报, 2012, 32(7): 558-561.
Chen Haiping, Wang Zhongping. Process simulation of the multiple cyclic CCRs system for CO2 capture based on Aspen Plus[J]. Journal of Chinese Society of Power Engineering, 2012, 32(7): 558-561.
[13]张学镭, 陈海平. 供能方式对钙基吸收剂循环煅烧/碳酸化法捕集CO2热力性能的影响[J]. 中国工程电机学报, 2013, 33(29): 49-55.
Zhang Xuelei, Chen Haiping. Influence of energy supply mode on thermodynamic performance of CO2 capture systems with Ca-based sorbent cyclic calcination/carbonation reaction[J]. Proceedings of the CSEE, 2013, 33(29): 49-55.
[14]王忠平. CCRs 二氧化碳减排系统的余热优化利用研究与分析[D]. 保定: 华北电力大学, 2013.
Wang Zhongping. Surplus heat utilization analysis of coal-fired power plant with CO2 capture system based on CCRs[D]. Baoding: North China Electric Power University, 2013.
教育部中央高校基本科研业务费专项资金资助项目(09MG34)
AI小编
/
| 〈 |
|
〉 |