基于COA-EO混合算法的含DG的配电网Pareto最优规划

曾鸣,彭丽霖,樊倩男,李冉

电力建设 ›› 2015, Vol. 36 ›› Issue (11) : 1-9.

PDF(810 KB)
PDF(810 KB)
电力建设 ›› 2015, Vol. 36 ›› Issue (11) : 1-9. DOI: 10.3969/j.issn.1000-7229.2015.11.001
配电网规划专栏

基于COA-EO混合算法的含DG的配电网Pareto最优规划

  • 曾鸣,彭丽霖,樊倩男,李冉
作者信息 +

Pareto Optimal Planning Model of Distribution Network with DG Based on COA-EO Hybrid Algorithm

  • ZENG Ming, PENG Lilin, FAN Qiannan, LI Ran
Author information +
文章历史 +

摘要

含DG的配电网规划是一种复杂的组合优化问题,随着智能配电网的发展以及波动性可再生能源的接入,对优化模型的效率提出了更高的要求。该文提出了基于混沌优化算法(chaos optimization algorithm,COA)和极值动力学优化算法(extreme dynamics optimization algorithm,EO)相互结合的多目标问题求解模型。通过算例验证,结果表明COA-EO优化算法同时利用COA算法和EO算法的优点,从而成功避免了各自缺陷,使得普通EO算法跳出局部最优,避免了算法的早熟现象,从而得到了全局最优结果。另外,为得到更好的多目标优化结果,引入Pareto最优解,并利用所提出的COA-EO算法求解Pareto最优解。计算结果亦表明COA-EO算法的优化性能优于EO算法、遗传(genetic algorithm,GA)算法、蚁群(ant colony optimization,ACO)算法、ACO-EO算法和GA-EO算法,说明COA-EO算法是解决含DG配电网规划问题的有效工具。

Abstract

 

Distribution network planning with DG is a complex combinatorial optimization problem. Along with the development of smart distribution network and fluctuant renewable energy access, it puts forward higher requirements on the efficiency of optimization model. This paper proposed COA-EO algorithm which combined chaos optimization algorithm (COA) and extreme dynamics optimization algorithm (EO) to solve the multi-objective optimization problem. The example verification results show that COA-EO optimization algorithm can take advantage of both COA and EO and manage to avoid the shortcomings, so that it can make ordinary EO escape from local optimal solution, avoid the premature phenomenon of the algorithm, and eventually obtain the globally optimal solution. In addition, in order to get a better multi-objective optimization result, this paper introduced the Pareto optimal solution, and used the proposed COA-EO algorithm to solve the Pareto optimal solution. The calculation results show that the optimization performance of COA-EO algorithm is superior to EO, genetic algorithm (GA), ant colony optimization (ACO), ACO-EO algorithm and GA-EO algorithm, which indicates that COA-EO algorithm is effective for distribution network planning with DG.

关键词

配电网规划 / 分布式电源 / 可再生能源 / COA-EO混合优化算法 / Pareto最优解

Key words

distribution network planning / distributed generation / renewable energy / COA-EO hybrid optimization algorithm / Pareto optimal solution

引用本文

导出引用
曾鸣,彭丽霖,樊倩男,李冉. 基于COA-EO混合算法的含DG的配电网Pareto最优规划[J]. 电力建设. 2015, 36(11): 1-9 https://doi.org/10.3969/j.issn.1000-7229.2015.11.001
ZENG Ming, PENG Lilin, FAN Qiannan, LI Ran. Pareto Optimal Planning Model of Distribution Network with DG Based on COA-EO Hybrid Algorithm[J]. Electric Power Construction. 2015, 36(11): 1-9 https://doi.org/10.3969/j.issn.1000-7229.2015.11.001
中图分类号: TM 715   

参考文献

 

[1]努尔·白克力.进一步提升配电网发展水平[N].中国能源报,2015-09-06:17.
Noor·Bekri.Further promoting the development of distribution network[N].China Energy News,2015-09-06:17.
[2]尤毅,刘东,于文鹏.主动配电网技术及其进展[J].电力系统自动化,2012,36(5):9-25.
You Yi,Liu Dong,Yu Wenpeng.Technology and its trends of active distribution network[J].Automation of Electric Power Systems,2012,36 (5):9-25.
[3]张节潭,程浩忠,姚良忠.主动管理在含有分布式电源的配电网中的应用[J].电力科学与技术学报,2008,23(1):18-24.
Zhang Jietan,Cheng Haozhong,Yao Liangzhong,Application of active management to distribution network with distributed generation[J].Power and Technology Science,2008,23(1):18-24.
[4]Martine V F,Borges C L T.Active distribution network integrated planning incorporating distributed generation and load response uncertainties[J].IEEE Transactions on Power System,2011,26(4):2164-2172.
[5]杨新法,苏剑,吕志鹏,等. 微电网技术综述[J]. 中国电机工程学报, 2014, 34(1): 57-70.
Yang Xinfa,Su Jian,Lyu Zhipeng, et al. Overview on Micro-grid Technology[J]. Proceedings of the CSEE, 2014, 34(1): 57-70.
[6]Li D Q,Xu J Z,Luo Y.Distribution network expansion planning including distributed generation[C]//Proceedings of the CSU-EPSA.Tianjin,China,2012,24(5):88-92.
[7]Popovicz N,Kerleta V D,Popovic D S.Hybrid simulated annealing and mixed integer linear programming algorithm for optimal planning of radial distribution networks with distributed generation[J].Electric Power Systems Research,2014(108):211-222.
[8]Zhang H,Vittal V,Heydt G T,et al.A mixed-integer linear programming approach for multi-stage security-constrained transmission expansion planning[J].IEEE Transactions on Power Systems,2012,27(2):1125-1133.
[9]Paiva P C,Khodr H M,Domínguez-Navarro J A,et al.Integral planning of primary-secondary distribution systems using mixed integer linear programming[J].IEEE Transactions on Power Systems, 2005,20(2):1134-1143.
[10]Foster J D,Berry A M,Boland N,et al.Comparison of mixed-integer programming and genetic algorithm methods for distributed generation planning[J].IEEE Transactions on Power Systems,2014,29(2):833-843.
[11]AlRashidi M R,AlHajri M F.Optimal planning of multiple distributed generation sources in distribution networks:A new approach[J].Energy Conversion and Management,2011,52(11):3301-3308.
[12]Abu-Mouti F S,El-Hawary M E.Optimal distributed generation allocation and sizing in distribution systems via artificial bee colony algorithm[J].IEEE Transactions on Power Delivery,2011,26(4):2090-2101.
[13]Hung D Q,Mithulananthan N.Multiple distributed generator placement in primary distribution networks for loss reduction[J].IEEE Transactions on Industrial Electronics,2013,60(4):1700-1708.
[14]Paliwal P,Patidar N P,Nema R K.Planning of grid integrated distributed generators: A review of technology,objectives and techniques[J].Renewable and Sustainable Energy Reviews,2014(40):557-570.
[15]杨毅,韦钢,周冰.含分布式电源的配电网模糊优化规划[J].电力系统自动化,2012,36(5):9-25.
Yang Yi,Wei Gang,Zhou Bing.Optimized fuzzy planning of the distribution network including distributed generation[J].Automation of Electric Power Systems,2012,36(5):9-25.
[16]王一,程浩忠.计及输电阻塞的帕累托最优多目标电网规划[J].中国电机工程学报,2008,28(13):13-15.
Wang Yi,Cheng Haozhong.Pareto optimality based on multi-objective transmission planning considering transmission congestion[J].Proceedings of the CSEE,2008,28(13):13-15.
[17]付晓刚,于金寿.基于极值动力学机制和信息融合搜索的混合算法及其应用[J].化工学报,2011,62(8):24-26.
Fu Xiaogang,Yu Jinshou.A hybrid algorithm based on extremal optimization with adaptive levymutation and information fashion algorithm and its applications[J].Chemical Technology, 2011,62(8):24-26.
[18]袁晓芳,王耀南.基于混沌优化算法的支持向量机参数选取方法[J].控制与决策,2006,21(1):13-16.
Yuan Xiaofang,Wang Yaonan.Selection of SVM parameters using chaos optimization algorithmst [J].Control and Decision,2006,21 (1):13-16.

基金

国家自然科学基金项目(51277067,71271082);中央高校基本科研业务费专项资金资助(2015XS37);国家软科学研究计划项目(2012GXS4B064)


PDF(810 KB)

Accesses

Citation

Detail

段落导航
相关文章
AI小编
你好!我是《电力建设》AI小编,有什么可以帮您的吗?

/