含储能虚拟电厂接入配电网的联合优化调度

黄铃燃,边晓燕,李东东,林顺富

电力建设 ›› 2017, Vol. 38 ›› Issue (9) : 38.

PDF(2279 KB)
PDF(2279 KB)
电力建设 ›› 2017, Vol. 38 ›› Issue (9) : 38. DOI: 10.3969/j.issn.1000-7229.2017.09.006
虚拟电厂 ·栏目主持 艾芊教授·

 含储能虚拟电厂接入配电网的联合优化调度

  •  黄铃燃,边晓燕,李东东,林顺富
     
作者信息 +

 Joint Optimal Dispatch for Power Distribution Network with Energy Storage Virtual Power Plant

 

  •  HUANG Lingran, BIAN Xiaoyan, LI Dongdong, LIN Shunfu
     
Author information +
文章历史 +

摘要

 摘 要:为解决不确定性能源发电给配电网带来的隐患和经济性问题,研究含间歇分布式能源的虚拟电厂(virtual power plant,VPP)接入配电网的联合优化调度对提高系统安全和促进新能源消纳具有十分重要的意义。综合考虑风电及储能的运行特性,提出一种改进的Buckets方法,建立了考虑风电不确定性和含储能的虚拟电厂参与配电网调度的优化机组组合模型,基于6节点系统研究了改进的Buckets方法对发电成本和机组组合的影响。与传统Buckets方法相比,采用所提方法使得模型的发电成本及开机时段减少,表明该方法能够实现发电成本最优、风电的充分消纳以及储能的灵活运用。
 

Abstract

 ABSTRACT:  To solve the challenges and economic problems of power distribution network caused by the uncertainty of the energy, it is very important to study the model of the joint optimal dispatch unit commitment of the virtual power plant (VPP) integrated with intermittent distributed energy to improve the operation security and the utilization of new energy. This paper proposes an improved Buckets method considering the operation characteristics of wind power and energy storage, and establishes an optimal unit commitment model of power distribution network, taking into account the uncertainty of the wind power and VPP with energy storage system. Based on the 6-node system, this paper studies the impact of the improved Buckets method on the cost of power generation and unit commitment. Compared with the traditional Buckets method, the proposed method can reduce the generation cost and starting up time of the model, which shows that the method can realize the optimal cost, the full use of wind power and the flexible use of energy storage.
 

关键词

  / 风电 / 虚拟电厂(VPP) / 机组组合 / 储能 / 改进Buckets法

Key words

 wind power / virtual power plant (VPP) / unit commitment / energy storage / improved Buckets method

引用本文

导出引用
黄铃燃,边晓燕,李东东,林顺富.  含储能虚拟电厂接入配电网的联合优化调度[J]. 电力建设. 2017, 38(9): 38 https://doi.org/10.3969/j.issn.1000-7229.2017.09.006
HUANG Lingran, BIAN Xiaoyan, LI Dongdong, LIN Shunfu.  Joint Optimal Dispatch for Power Distribution Network with Energy Storage Virtual Power Plant
 
[J]. Electric Power Construction. 2017, 38(9): 38 https://doi.org/10.3969/j.issn.1000-7229.2017.09.006
中图分类号:      TM 73   

参考文献

[1] TUOHY A, MEIBOM P, DENNY E, et al. Unit commitment for systems with significant wind penetration[J]. IEEE Transactions on Power Systems, 2009, 24(2): 592-601.
[2]MORALES J M, CONEJO A J, PEREZ-RUIZ J. Economic valuation of reserves in power systems with high penetration of wind power[J]. IEEE Transactions on Power Systems, 2009, 24(2): 900-910.
[3]王天旺, 高赟, 姜孟, 等. 虚拟电厂下计及分布式风电与储能系统的电力系统优化调度[J]. 电力建设, 2016, 37(11): 108-114.
WANG Tianwang, GAO Yun, JIANG Meng, et al. Power system optimal scheduling including distributed wind power and energy storage system via virtual power plant[J]. Electric Power Construction, 2016, 37(11): 108-114.
[4]卫志农, 余爽, 孙国强, 等. 虚拟电厂的概念与发展[J]. 电力系统自动化, 2013, 37(13): 1-9.
WEI Zhinong, YU Shuang, SUN Guoqiang et al. Concept and development of virtual power plant[J]. Automation of Electric Power Systems, 2013, 37(13): 1-9.
[5]WANG J, BOTTERUD A, BESSA R, et al. Wind power forecasting uncertainty and unit commitment[J]. Applied Energy, 2011, 88(11): 4014-4023.
[6]QUAN H, SRINIVASAN D, KHOSRAVI A. Incorporating wind power forecast uncertainties into stochastic unit commitment using neural network-based prediction intervals[J]. IEEE Transactions on Neural Networks and Learning Systems, 2015, 26(9): 2123-2135.
[7]徐璐, 袁越. 基于电动汽车一体化电站的虚拟电厂智能调度[J]. 电力建设, 2015, 36(7): 133-138.
XU Lu, YUAN Yue. Intelligent scheduling for virtual power plant based on electric vehicle integrated station[J]. Electric Power Construction, 2015, 36(7): 133-138.
[8]牛文娟, 李扬, 王蓓蓓. 考虑不确定性的需求响应虚拟电厂建模[J]. 中国电机工程学报, 2014, 34(22): 3630-3637.
NIU Wenjuan, LI Yang, WANG Beibei. Demand response based virtual power plant modeling considering uncertainty[J]. Proceedings of the CSEE, 2014, 34(22): 3630-3637.
[9]刘芳, 潘毅, 杨军峰, 等. 风电–火电–抽水蓄能联合优化机组组合模型[J]. 中国电机工程学报, 2015, 35(4): 766-775.
LIU Fang, PAN Yi, YANG Junfeng, et al. Unit commitment model for combined optimization of wind power-thermal power-pumped storage hydro[J]. Proceedings of the CSEE, 2015, 35(4): 766-775.
[10]邹云阳, 杨莉. 基于经典场景集的风光水虚拟电厂协同调度模型[J]. 电网技术, 2015, 39(7): 1855-1859.
ZOU Yunyang, YANG Li. Synergetic dispatch models of a wind/PV/hydro virtual power plant based on representative scenario set[J]. Power System Technology, 2015, 39(7): 1855-1859. 
[11]徐帆, 刘军, 张涛, 等. 考虑抽水蓄能机组的机组组合模型及求解[J]. 电力系统自动化, 2012, 36(12): 36-40.
XU Fan, LIU Jun, ZHANG Tao, et al. Unit commitment problem with pumped-storage units[J]. Automation of Electric Power Systems, 2012, 36(12):36-40.
[12]董文略, 王群, 杨莉. 含风光水的虚拟电厂与配电公司协调调度模型[J]. 电力系统自动化, 2015, 39(9): 75-81, 207.
DONG Wenlue, WANG Qun, YANG Li. A coordinated dispatching mode for a distribution utility and virtual power plants with wind/photovoltaic/hydro generators[J]. Automation of Electric Power Systems, 2015, 39(9): 75-81, 207.
[13]袁桂丽, 陈少梁, 刘颖, 等. 基于分时电价的虚拟电厂经济性优化调度[J]. 电网技术, 2016, 40(3): 826-832.
YUAN Guili, CHEN Shaoliang, LIU Ying, et al. Economic optimal scheduling of virtual power plant based on time-of-use power price[J]. Power System Technology, 2016, 40(3): 826-832.
[14]张明锐, 谢青青, 李路遥, 等. 考虑电动汽车能量管理的微网储能容量优化[J]. 中国电机工程学报, 2015, 35(18): 4663-4673.
ZHANG Mingyue, XIE Qingqing, LI Luyao, et al. Optimal sizing of energy storage for microgrids considering energy management of electric vehicles[J]. Proceedings of the CSEE, 2015, 35(18): 4663-4673.
[15]娄素华, 杨天蒙, 吴耀武, 等. 含高渗透率风电的电力系统复合储能协调优化运行[J]. 电力系统自动化, 2016, 40(7): 30-35.
LOU Suhua, YANG Tianmeng, WU Yaowu. Coordinated optimal operation of hybrid energy storage in power system accommodated high penetration of wind power[J]. Automation of Electric Power Systems, 2016, 40(7): 30-35. 
[16]谢毓广, 江晓东. 储能系统对含风电的机组组合问题影响分析[J]. 电力系统自动化, 2011, 35(5): 19-24.
XIE Yuguang, JIANG Xiaodong. Impact of energy storage system on the unit commitment problem with volatile wind power[J]. Automation of Electric Power Systems, 2011, 35(5): 19-24.
[17]UCKUN C, BOTTERUD A, BIRGE J R. An improved stochastic unit commitment formulation to accommodate wind uncertainty[J]. IEEE Transactions on Power Systems, 2016, 31(4): 2507-2517.
[18]WANG J, SHAHIDEHPOUR M, LI Z. Security-constrained unit commitment with volatile wind power generation[J]. IEEE Transactions on Power Systems, 2008, 23(3): 1319-1327.
[19]王颖, 张凯锋, 付嘉渝, 等. 抑制风电爬坡率的风储联合优化控制方法[J]. 电力系统自动化, 2013, 37(13):17-23.
WANG Ying, ZHANG Kaifeng, FU Jiayu, et al. Optimization control method of wind/storage system for suppressing wind power ramp rate[J]. Automation of Electric Power Systems, 2013, 37(13): 17-23.
[20]严干贵, 刘嘉, 崔杨, 等. 利用储能提高风电调度入网规模的经济性评价[J]. 中国电机工程学报, 2013, 33(22): 45-52.
YAN Gangui, LIU Jia, CUI Yang, et al. Economic evaluation of improving the wind power scheduling scale by energy storage system[J]. Proceedings of the CSEE, 2013, 33(22): 45-52. 
 

基金

 基金项目:上海市科委科研计划项目(16020501000)
 

PDF(2279 KB)

Accesses

Citation

Detail

段落导航
相关文章
AI小编
你好!我是《电力建设》AI小编,有什么可以帮您的吗?

/