摘要
气电联合系统协同运行能显著提高能源利用效率,其运行优化得到了广泛关注。文章建立了考虑需求响应(demand response,DR)的气电联合系统经济调度模型,并提出了基于近似动态规划(approximate dynamic programming, ADP)算法的联合系统经济调度策略。首先,采用粒子群(particle swarm optimization ,PSO)优化算法对用户侧的负荷曲线进行优化,从而最小化用户补偿费用和峰谷差率;随后建立线性化的气电联合系统运行模型,借助ADP算法求解。以Grave 6节点电力系统和14节点天然气网络进行仿真分析。仿真结果验证了所提模型和求解算法的有效性,考虑供需两侧的气电联合优化能提高能源利用效率。
Abstract
The operation of integrated gas and power system (IGPS) can significantly improve the efficiency of energy usage, and its operation optimization has received extensive attention. In this paper, an optimal energy flow optimization model of IGPS considering demand response (DR) is established, and the ADP algorithm based economic dispatch policy is proposed for the integrated systems. Firstly, the particle swarm optimization (PSO) algorithm based load curve optimization policy which aims at minimizing the DR compensation cost and peak-to-valley difference rate of load is proposed. Secondly, the IGPS operation model is simplified as a linearized optimization model and approximate dynamic programming (ADP) is adopted. Simulation analysis is performed using a Grave 6-node power system and a 14-node natural gas network. The simulation results verify the validity of the proposed model and the solution algorithm, and show that considering both sides of supply and demand of IGPS can improve the energy efficiency of the integrated energy system.
关键词
气电联合系统 /
经济调度 /
近似动态规划(ADP) /
需求响应(DR)
Key words
integrated gas and power system /
economic dispatch /
approximate dynamic programming /
demand response
帅航,艾小猛,仉梦林,杨立滨,李湃,乐零陵,方家琨,文劲宇.
需求响应下基于近似动态规划的气电联合系统经济调度[J]. 电力建设. 2018, 39(11): 1-9 https://doi.org/10.3969/j.issn.1000-7229.2018.11.001
SHUAI Hang, AI Xiaomeng, ZHANG Mengling, YANG Libin, LI Pai, LE Lingling, FANG Jiakun, WEN Jinyu.
Economic Dispatch of the Integrated Gas and Power System Based on ADP under Demand Response[J]. Electric Power Construction. 2018, 39(11): 1-9 https://doi.org/10.3969/j.issn.1000-7229.2018.11.001
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]文劲宇,方家琨. 能源互联网中的关键设备与支撑技术[J]. 南方电网技术, 2016, 10(3):1-10.
WEN Jinyu, FANG Jiakun. Key facilities and supportive technologies in energy internet[J]. Southern Power System Technology, 2016, 10(3):1-10.
[2]CORREA-POSADAC M, SáNCHEZ-MARTíN P, LUMBRERAS S. Security-constrained model for integrated power and natural-gas system[J]. Journal of Modern Power Systems & Clean Energy, 2017, 5(3):326-336.
[3]CHUAN HE, LIU T, LEI W U, et al. Robust coordination of interdependent electricity and natural gas systems in day-ahead scheduling for facilitating volatile renewable generations via power-to-gas technology[J]. Journal of Modern Power Systems & Clean Energy, 2017, 5(3):375-388.
[4]LIY, ZOU Y, TAN Y,et al. Optimal stochastic operation of integrated low-carbon electric power, natural gas and heat delivery system[J]. IEEE Transactions on Sustainable Energy, 2017, 9(1):273-283.
[5]赵娜,李翔宇, 朱永强,等. 能源互联微网需求侧气电协同优化策略[J]. 电力建设, 2017,38(12):60-67.
ZHAO Na, LI Xiangyu, ZHU Yongqiang, et al. Gas and electric collaborative optimization strategy for demand side of micro energy internet[J]. Electric Power Construction, 2017, 38(12):60-67.
[6]CUIH, LI F, HU Q,et al. Day-ahead coordinated operation of utility-scale electricity and natural gas networks considering demand response based virtual power plants[J]. Applied Energy, 2016, 176(176):183-195.
[7]王珺,顾伟, 张成龙,等. 智能社区综合能源优化管理研究[J]. 电力系统保护与控制, 2017, 45(1):89-97.
WANG Jun, GU Wei, ZHANG Chenglong, et al. Research on integrated energy management for smart community[J]. Power System Protection and Control, 2017, 45(1):89-97.
[8]景卫哲,刘洋, 向月,等. 基于需求侧响应的分布式冷热电联供系统能量管理策略[J]. 电力建设, 2017, 38(12):68-76.
JING Weizhe, LIU Yang, XIANG Yue, er al. Energy management strategy of DCCHP based on demand response[J]. Electric Power Construction, 2017, 38(12):68-76.
[9]ZENGQ, FANG J, LI J,et al. Steady-state analysis of the integrated natural gas and electric power system with bi-directional energy conversion[J]. Applied Energy, 2016 (184): 1483-1492.
[10]LIUC, SHAHIDEHPOUR M, WANG J. Coordinated scheduling of electricity and natural gas infrastructures with a transient model for natural gas flow[J]. Chaos, 2011, 21(2):531.
[11]CORREA-POSADAC M, SáNCHEZ-MARTíN P. Integrated power and natural gas model for energy adequacy in short-term operation[J]. IEEE Transactions on Power Systems, 2015, 30(6):3347-3355.
[12]FANGJ, ZENG Q, AI X, et al. Dynamic optimal energy flow in the integrated natural gas and electrical power systems[J]. IEEE Transactions on Sustainable Energy, 2018, 9(1):188-198.
[13]SHUAIH, AI X, WEN J, et al. Hybrid approximate dynamic programming approach for dynamic optimal energy flow in the integrated gas and power systems[C]// IEEE Conference on Energy Internet and Energy System Integration. IEEE, 2017:1-6.
[14]艾小猛, 方家琨, 徐沈智,等. 一种考虑天然气系统动态过程的气电联合系统优化运行模型[J]. 电网技术, 2018,42(2):409-416.
AI Xiaomeng, FANF Jiakun, XU Shenzhi, et al. An optimal energy flow model in integrated gas-electric systems considering dynamics of natural gas system[J]. Power System Technology, 2018,42(2):409-416.
[15]林建熙,史俊祎, 文福拴,等. 计及可控负荷的工业微网源荷协同优化调度[J]. 电力建设, 2018, 39(1):1-9.
LIN Jianxi, SHI Junyi, WEN Fushuan, et al. Coordinated optimal dispatch among generation and loads in industrial microgrids with controllable loads[J]. Electric Power Construction, 2018, 39(1):1-9.
[16]MOKHATABS, MOKHATABS. Handbook of natural gas transmission and processing[M]. Gulf publishing Company, MA, USA, 2006.
[17]KHORRAMDELH, AGHAEI J, KHORRAMDEL B, et al. Optimal battery sizing in microgrids using probabilistic unit commitment[J]. IEEE Transactions on Industrial Informatics, 2016, 12(2):834-843.
[18]SHUAI H, FANG J, AI X, et al. Stochastic optimization of economic dispatch for microgrid based on approximate dynamic programming[J]. IEEE Transactions on Smart Grid, 2018, early access. DOI: 10.1109/TSG.2018.2798039.
[19]简淦杨,刘明波, 林舜江. 随机动态经济调度问题的存储器建模及近似动态规划算法[J]. 中国电机工程学报, 2014, 34(25):4333-4340.
JIAN Ganyang, LIU Mingbo, LIN Shunjiang. Storage modeling and approximate dynamic programming algorithm for stochastic dynamic economic dispatch problems[J]. Proceedings of the CSEE, 2014, 34(25):4333-4340.
基金
国家自然科学基金项目(51707077);国家电网公司科技项目(5228001600DX)