• CSCD核心库收录期刊
  • 中文核心期刊
  • 中国科技核心期刊

电力建设 ›› 2019, Vol. 40 ›› Issue (11): 73-86.doi: 10.3969/j.issn.1000-7229.2019.11.010

• 智能电网 • 上一篇    下一篇

基于电-热-气混合潮流的园区综合能源系统站-网协同规划

黄伟,柳思岐,叶波,杨子力   

  1. 华北电力大学电气与电子工程学院,北京市 102206
  • 出版日期:2019-11-01
  • 作者简介:黄伟(1964),男,博士,教授,主要研究方向为综合能源系统运行与控制、主动配电网调度与控制; 柳思岐(1994),女,硕士研究生,主要研究方向为综合能源系统规划与评价; 叶波(1996),女,硕士研究生,主要研究方向为综合能源系统调度与运行; 杨子力(1994),男,硕士研究生,主要研究方向为综合能源规划与评价。

Station-Network Collaborative Planning Based on Power-Heat-Gas Multi-Energy Flow of RIES

HUANG Wei,LIU Siqi,YE Bo,YANG Zili   

  1. School of Electrical and Electronic Engineering,North China Electric Power University,Beijing 102206,China
  • Online:2019-11-01

摘要: 随着综合能源系统(integrated energy system,IES)的发展,能源站、供能网络和负荷之间的互动性更为密切。因此,在对IES进行规划时,考虑不同类型的负荷需求和能源设备的耦合性,对能源站容量、位置和网架结构进行协同规划更为合理。文章基于电-热-气混合潮流,建立了考虑运行的能源站-网协同规划双层模型。上层模型为使能源站与三网管道的建设运行成本最小的改进p-中位模型,在能距中加入了基于电-热-气混合潮流的损耗成本,决策变量为能源站位置、容量及网架结构;下层模型为考虑经济性、环保性及供能可靠性的多目标优化模型,决策出各能源站的出力调度值,为混合潮流提供初值。采用贪婪-变邻域蛛网(greedy-variable neighborhood cobweb,GVNC)算法和改进多目标粒子群算法对模型求解,在提高计算效率的同时可以求得全局最优解。通过算例验证了所提模型和算法的有效性。

关键词: 能源站, 混合潮流, 能距, 管网布局, 贪婪-变邻域(GVNC)算法

Abstract: With the development of integrated energy system (IES), the interaction among energy stations, networks and loads is closer. Therefore, it is more reasonable to consider different types of load demand and the coupling of energy equipment when coordinating the capacity, location and grid structure of energy stations in IES planning. On the basis of the power-heat-gas multi-energy flow, this paper establishes a two-level model of station-network cooperative planning. The upper-level model is an improved p-median model to minimize the construction and operation cost of energy stations and three-network pipelines. The loss cost of electric, heating and gas networks calculated by the power-heat-gas multi-energy flow is added to the energy distance, and the decision variables are the location, capacity of energy stations and grid structure. The lower-level model is a multi-objective optimization model considering economy, environmental protection and reliability of energy supply. The output values are dispatched to the multi-energy flow as initial data. The greedy-variable neighborhood cobweb (GVNC) algorithm and the improved MOPSO algorithm are used to solve the model, which can improve the computational efficiency and obtain the global optimal solution. The effectiveness of the proposed model and algorithm is verified by an example.

Key words: energy station, multi-energy flow, energy distance, network layout, greedy-variable neighborhood cobweb (GVNC) algorithm

中图分类号: