基于复合分类器的网络入侵检测模型

刘克文 张贲 王宇飞

电力建设 ›› 2011, Vol. 32 ›› Issue (11) : 40-44.

PDF(1014 KB)
PDF(1014 KB)
电力建设 ›› 2011, Vol. 32 ›› Issue (11) : 40-44.
输配电技术

基于复合分类器的网络入侵检测模型

  • 刘克文1,张贲2,王宇飞3
作者信息 +

Intrusion Detection Model Based on Hybrid Classifier

Author information +
文章历史 +

摘要

为提高国家电网网络入侵检测中攻击分类问题的准确度,提出一种基于复合分类器的入侵检测模型。复合分类器由核主成分分析、量子遗传算法和前馈(back propagation,BP)神经网络组合而成。复合分类器先使用核主成分分析将高维数的原始数据降维,降维后的数据再通过BP神经网络训练生成分类模型,其中BP神经网络的参数通过量子遗传算法优化得到,最后使用分类模型对待测样本做精确入侵检测分类。与传统入侵检测算法相比,基于复合分类器的入侵检测模型更准确。

Abstract

In order to improve the accuracy of classification problem in intrusion detection for state grid, a novel intrusion detection model, which is based on the hybrid classifier, is proposed in this paper. The hybrid classifier is composed by kernel principal component analysis (KPCA), back propagation neural network (BPNN) and quantum genetic algorithm (QGA). In the hybrid classifier, KPCA is used to reduce dimensions of data. The classification model is trained by BPNN, of which the parameters are optimized by QGA. Based on the classification model, the data samples are classified by accurate intrusion detection. Compared with the traditional methods, the intrusion detection model based on hybrid classifier has better performance in reducing the calculation errors.

关键词

入侵检测 / 核主成分分析;BP神经网络 / 量子遗传算法 / 复合分类器 / 分类器误差

引用本文

导出引用
刘克文 张贲 王宇飞. 基于复合分类器的网络入侵检测模型[J]. 电力建设. 2011, 32(11): 40-44
Intrusion Detection Model Based on Hybrid Classifier[J]. Electric Power Construction. 2011, 32(11): 40-44
中图分类号: TP393   

PDF(1014 KB)

Accesses

Citation

Detail

段落导航
相关文章
AI小编
你好!我是《电力建设》AI小编,有什么可以帮您的吗?

/