薄覆冰导线气动力特性风洞试验研究

李海若,郭海超,谢强

电力建设 ›› 2013, Vol. 34 ›› Issue (3) : 12-16.

PDF(498 KB)
PDF(498 KB)
电力建设 ›› 2013, Vol. 34 ›› Issue (3) : 12-16.
重点理论研究

薄覆冰导线气动力特性风洞试验研究

  • 李海若1,郭海超2,谢强1
作者信息 +

 

Wind Tunnel Test on Aerodynamic Characteristic of Conductor with Thin Ice Accretions

  • LI Hairuo1, GUO Haichao2, XIE Qiang1
Author information +
文章历史 +

摘要

薄覆冰舞动是一种常见而又难以用传统理论来解释的现象,需采用风洞试验对薄覆冰导线的气动力特性进行研究。根据某工程舞动现场调查结果,设计了3种覆冰厚度导线模型做风洞试验,利用六分量高频天平测得在2种不同流场中准椭圆形覆冰导线模型的平均气动力。通过平均气动力系数的对比分析结果,指出Den Hartog系数不适合用来分析薄覆冰导线的舞动特性。在Den Hartog对导线舞动定性分析的理论基础上,提出了2个发生舞动的必要条件。通过试验结果的分析,得到薄覆冰导线可能发生驰振不稳定的风向角。

Abstract

Galloping of conductor with thin ice accretions is a common but unexplained phenomenon. Wind tunnel tests are needed to study the aerodynamic characteristics of conductors with thin ice accretions. Based on the galloping investigation of real transmission lines with ice, three conductor models with different ice thickness are designed and tested in the wind tunnel. The average aerodynamics of quasi-oval shape iced conductor models in two different flow fields are measured by using six-component high-frequency balance. Through the comparison and analysis of average aerodynamic coefficients, Den Hartog coefficient is found not suitable for the analysis on thin ice wire. On the basis of qualitative explanation of Den Hartog to galloping, two necessary conditions of galloping are proposed. Through the analysis of test results, the wind attack angle has been acquired when the conductor gallops with thin ice accretions.

关键词

薄覆冰 / 导线舞动 / 风洞试验 / 气动力 / 驰振不稳定

Key words

thin ice accretions / conductor galloping / wind tunnel test / aerodynamic force / galloping instability

引用本文

导出引用
李海若,郭海超,谢强. 薄覆冰导线气动力特性风洞试验研究[J]. 电力建设. 2013, 34(3): 12-16
LI Hairuo, GUO Haichao, XIE Qiang.  
Wind Tunnel Test on Aerodynamic Characteristic of Conductor with Thin Ice Accretions
[J]. Electric Power Construction. 2013, 34(3): 12-16

参考文献

[1]湖南省电力试验研究院.12.27长沙、湘潭地区线路跳闸情况分析报告[R].长沙:湖南省电力试验研究院,2009.



[2]郭应龙,李国兴,尤传永.输电线路舞动[M].北京:中国电力出版社,2003.



[3]Den Hartog J P. Transmission Line vibration due to sleet [J].Transactions AIEE, 1932, 51(4):1074-1086.



[4]Nigol O, Buchan P G. Conductor galloping-part 1: Denhartog mechanism [J]. IEEE Transactions on Power Apparatus and Systems,1981, PAS-100(2): 699-707.



[5]Nigol O, Buchan P G. Conductor galloping-part 2: Torsional mechanism [J]. IEEE Transactions on Power Apparatus and Systems, 1981, PAS-100(2): 708-720.



[6]Richardson A S. Predicting galloping amplitudes[J].ASCE Journal of Engineering Mechanics, 1988.114(4): 716-723.



[7]RichardsonA S. Predicting galloping amplitudes: II[J]. Journal of Engineering Mechanics, 1988, 114(11): 1945-1952.



[8]Yu P, Popplewell N, Shah A H. Instability trends of inertrially coupled galloping part I: Periodic vibrations [J]. Journal of Sound and Vibration.1995,183(4): 663-678.



[9]Yu  P, Desai Y M, Shah A H, et al. Three-degree-of-freedom model for galloping part I: Formulation[J].ASCE Journal of Engineering Mechanics, 1993, 119(12): 2404-2425.



[10]何锃,赵高煜.安装失谐摆的大跨越分裂导线自由振动计算[J]. 中国电机工程学报,2003, 23(2): 63-66.



[11]何锃,赵高煜. 分裂导线扭转舞动分析的动力学模型[J].工程力学,2001,18(2): 126-134.



[12]蒋兴良,张丽华.导线覆冰碰冻率及最大覆冰直径分析[J]. 中国电机工程学报,1999,  19(9): 10-13.



[13]孙才新,蒋兴良,熊启新,等.导线覆冰及其干湿增长临界条件分析[J].中国电机工程学报, 2003, 23(3): 141-145.



[14]顾明,马文勇,全涌,等.两种典型覆冰导线气动力特性及稳定性分析[J]. 同济大学学报:自然科学版, 2009, 37(10): 1328-1332.



[15]顾明,马文勇,全涌,等.准椭圆形覆冰导线气动力特性实验研究[J].同济大学学报:自然科学版,2010,38(10): 1409-1413.



[16]GB  50009—2001 建筑结构荷载规范[S].北京:中国建筑工业出版社,2002.

基金

教育部霍英东教育基金会优选资助课题(114021)。


PDF(498 KB)

Accesses

Citation

Detail

段落导航
相关文章
AI小编
你好!我是《电力建设》AI小编,有什么可以帮您的吗?

/