引入二代小波的自适应BP神经网络局部放电故障识别

邓雨荣,郭丽娟,郭飞飞,张炜

电力建设 ›› 2013, Vol. 34 ›› Issue (6) : 87-91.

PDF(600 KB)
PDF(600 KB)
电力建设 ›› 2013, Vol. 34 ›› Issue (6) : 87-91.
运行与管理

引入二代小波的自适应BP神经网络局部放电故障识别

  • 邓雨荣1,郭丽娟1,郭飞飞2,张炜1
作者信息 +

Partial Discharge Fault Identification by Using Adaptive BP Neural Network Based on Second Generation Wavelet

  • DENG Yurong,GUO Lijuan,GUO Feifei,ZHANG Wei
Author information +
文章历史 +

摘要

将二代小波与神经网络相结合进行局部放电故障分类。基于二代小波与信息熵理论,提取放电信号,以小波能谱熵与系数熵作为特征量。将提取的特征向量输入神经网络进行训练,训练时通过改进共轭梯度法自适应调整误差,得到最优训练网络。采用该文算法、经典神经网络以及小波神经网络,分别对放电模型产生的3种放电类型进行识别测试的结果表明:该文方法在识别准确率以及算法执行效率上,均优于经典神经网络以及小波神经网络。

Abstract

Second generation wavelet (SGWT) and adaptive BP neural network were combined to classify partial discharge fault. Partial discharges (PD) signal was recognized based on SGWT and information entropy theory. Wavelet energy entropy and coefficient entropy were taken as characteristic quantity, and input into neural network for training. In the training process, the neural network could adaptively adjust error to obtain the optimal training network by using the improved conjugate gradient methods. Finally, the comparison between the proposed algorithm, classic neural network and wavelet neural network was carried out on the recognition test of three kings of PDs caused by discharge model, whose results showed that the recognition accuracy and execution efficiency of the proposed algorithm were better that those of classic neural network and wavelet neural network.

关键词

二代小波 / 神经网络 / 局部放电 / 小波能谱熵 / 系数熵 / 共轭梯度

Key words

second generation wavelet (SGWT) / neural network / partial discharge / wavelet energy entropy / coefficient entropy / conjugate gradient

引用本文

导出引用
邓雨荣,郭丽娟,郭飞飞,张炜. 引入二代小波的自适应BP神经网络局部放电故障识别[J]. 电力建设. 2013, 34(6): 87-91
DENG Yurong1,GUO Lijuan1,GUO Feifei2,ZHANG Wei1. Partial Discharge Fault Identification by Using Adaptive BP Neural Network Based on Second Generation Wavelet[J]. Electric Power Construction. 2013, 34(6): 87-91

参考文献

 [1]肖燕, 郁惟镛. GIS中局部放电在线监测研究的现状与展望[J]. 高电压技术,2005,31(1):47-49.


[2]孙才新, 许高峰, 唐炬, 等. 以盒维数和信息维数为识别特征量的GIS 局部放电模式识别方法[J]. 中国电机工程学报, 2005, 25(3): 100-104.

[3]邓雨荣,孙志锐,张炜,等. 电力变压器的局部放电典型模型试验[J].电力建设,2012, 33(9) :20-24.

[4]乐波,谢恒堃.基于模糊输出BP 神经网络的电机主绝缘老化状态评估方法[J].中国电机工程学报,2005,25(2):76-81.

[5]卢鹏,方煜瑛,刘旭.1 100  kV GIS设备特高频(UHF)法测量局部放电的应用研究[J].电力建设,2009,30(6):33-35.

[6]Danikas M G, Gao N, Aro M. Partial discharge recognition using neural networks: a review [J]. Electrical Engineering, 2003, 85(2) : 87-93.

[7]Hozumi N, Okamoto T, Imajo T. Discrimination of partial discharge patterns using neural network [J]. Proceedings of the 3rd IC-PADM, Tokyo, 1991: 476-478.

[8]刘娜,高文胜,谈克雄.基于组合神经网络模型的电力变压器故障诊断方法[J].电工技术学报,2003, 18(2) : 83-86.

[9]Hong T, Hilder D, CFang M T. PD classification by modular neural networks based on task decomposition [J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1996, 3(2): 112-114.

[10]Gulski E, Morshuis P H F, Kreuger F H. Automized recognition of partial discharges in cavities [J]. Japanese Journal of Applied Physics, 1990, 29(7): 1329-1335.

[11]Kranz H G. Diagnosis of partial discharge signals using neural networks and minimum distance classification [J]. IEEE Transactions on EI, 1993, 28(6): 1016-1024.

[12]Gulski E,Krivds A. A combined ANN and expert system tool for transformer fault diagnosis[J]. IEEE Transactions on Electrical Insulation, 1996, 3(2):207-212.

[13]毛颖科, 关志成, 王黎明, 等. 基于BP 人工神经网络的绝缘子泄漏电流预测[J]. 中国电机工程学报, 2007, 27(27): 7-12.

[14]何正友, 蔡玉梅, 钱清泉.小波熵理论及其在电力系统故障检测中的应用研究[J]. 中国电机工程学报,2005,25(5):38-43.

基金

南方电网公司科技项目(K-GX2012-028, K-GX2011-013)。


PDF(600 KB)

Accesses

Citation

Detail

段落导航
相关文章
AI小编
你好!我是《电力建设》AI小编,有什么可以帮您的吗?

/