风电功率预测误差分析及预测误差评价方法

孟岩峰,胡书举,邓雅,许洪华

电力建设 ›› 2013, Vol. 34 ›› Issue (7) : 6-9.

PDF(499 KB)
PDF(499 KB)
电力建设 ›› 2013, Vol. 34 ›› Issue (7) : 6-9.
重点理论研究

风电功率预测误差分析及预测误差评价方法

  • 孟岩峰1,2,胡书举1,2,邓雅1,2,许洪华1,2
作者信息 +

Analysis and Evaluation Method of Wind Power Predicted-Error

  •  
    MENG Yanfeng1,2, HU Shuju1,2, DENG Ya1,2, XU Honghua 1,2
Author information +
文章历史 +

摘要

风电功率预测对含大规模风电的电力系统安全、经济运行有着重要意义。分析了风速和风功率特性、预测模型算法和预测模型输入变量对风功率预测误差的影响;以某风电场实测数据为例,对预测结果采用误差评价指标进行了评价分析,提出通过预测模型修正逐步减小风电功率预测误差的方法,给出了预测模型修正流程图。可为提高风电功率预测精度提供参考,从而使功率预测系统可以更好地服务电力生产。

Abstract

Wind power prediction is significantly important to the safe and economic operation of power system with large-scale wind power. The effect of the characteristic of wind speed and wind power, the algorithm and input variables of prediction model on power prediction error was analyzed. Taking the measured data in a wind farm as an example, the error evaluation indices were used to evaluate the predictive results, and the method of model modification to gradually reduce the prediction error of wind power has been proposed. Then, the flow chart of prediction error modification was presented. The method can improve the prediction accuracy of wind power, and make the wind power prediction system better for the practical production.

关键词

风力发电 / 功率预测 / 误差评价 / 预测模型修正

Key words

wind power generation / power prediction / error evaluation / prediction model modification

引用本文

导出引用
孟岩峰,胡书举,邓雅,许洪华. 风电功率预测误差分析及预测误差评价方法[J]. 电力建设. 2013, 34(7): 6-9
MENG Yanfeng, HU Shuju, DENG Ya, XU Honghua. Analysis and Evaluation Method of Wind Power Predicted-Error[J]. Electric Power Construction. 2013, 34(7): 6-9

参考文献

 


[1]范高锋,赵海翔,戴慧珠. 大规模风电对电力系统的影响和应对策略[J]. 电网与清洁能源,2008,24(7):44-48.

[2]陈树勇,戴慧珠,白晓民,等. 风电场的发电可靠性模型及其应用[J]. 中国电机工程学报,,2000,20(3):26-29.

[3]周松林,茆美琴,苏建徽. 风电功率短期预测及非参数区间估计[J] . 中国电机工程学报,2011,31(25):10-16.

[4]盛大凯,仇卫东,齐立忠. 实现风电发展“五个转变”的有效途径[J]. 电力建设,2011,32(11):1-4.

[5]Alexiadis M,Dokopoulos P,Sahsamanoglou H, et al. Short term forecasting of wind speed and related electrical power[J]. Solar Energy, 1998, 63(1): 61-68.

[6]范高锋,王伟胜,刘纯. 基于人工神经网络的风电功率短期预测系统[J]. 电网技术,2008,32(22):72-76.

[7]李智,韩学山,韩力,等. 地区电网风电场功率超短期预测方法[J]. 电力系统自动化,2010,34(7):90-94.

[8]王丽婕,冬雷,廖晓钟,等. 基于小波分析的风电场短期发电功率预测[J]. 中国电机工程学报,2009,29(28):30-33.

[9]Torres J L, Garcia A, de Blas M,et al. Forecast of hourly average wind speed with ARMA models in Navarre [J]. Solar Energy, 2005, 79(1):65-77.

[10]戚双斌,王维庆,张新燕. 基于SVM 的风速风功率预测模型[J]. 可再生能源,2010,28(4):25-28.

[11]杨桂兴,常喜强,王维庆,等. 对风电功率预测系统中预测精度的讨论[J]. 电网与清洁能源,2011,27(1):67-71.

基金

国家科技支撑计划课题资助项目(2011BAA07B06)。


PDF(499 KB)

Accesses

Citation

Detail

段落导航
相关文章
AI小编
你好!我是《电力建设》AI小编,有什么可以帮您的吗?

/