PDF(21274 KB)
带恒功率负荷并联Boost DC/DC电压源组网系统稳定性分析
肖朝霞, 李盼, 朱洪驰, 张世荣, 曹家宁
电力建设 ›› 2023, Vol. 44 ›› Issue (3) : 122-137.
PDF(21274 KB)
PDF(21274 KB)
带恒功率负荷并联Boost DC/DC电压源组网系统稳定性分析
Stability Analysis of Paralleled Boost DC/DC Voltage-Source Interfaced System with Constant Power Load
针对直流组网中并联Boost DC/DC变换器带恒功率负荷的“源-荷”级联系统稳定性问题,利用特征值法和阻抗比法重点分析了并联Boost DC/DC变换器系统的稳定性和带恒功率负荷的能力,并通过时域仿真法验证理论分析的正确性,系统性比较了V-I和I-V下垂控制在并联Boost DC/DC变换器系统应用中的优缺点。多台并联Boost DC/DC变换器带阻感负荷时,控制器参数的稳定域基本不随并联台数的增加而改变,V-I下垂系统随虚拟阻抗减小(I-V下垂系统随虚拟阻抗增加)系统稳定性变差;带恒功率负荷时,系统带载能力大小变化与稳定性方向一致。相同虚拟阻抗下,多台并联V-I下垂系统带载能力大于I-V下垂系统。为V-I和I-V两类下垂控制在并联Boost DC/DC变换器实际工程中的应用提供了一般设计规律。
Aiming at the stability problem of source-load cascade system with constant power load in paralleled Boost DC/DC converter in DC network, the stability of the paralleled Boost DC/DC converters and the load capacity with constant power load are analyzed by eigenvalue method and impedance ratio method. The correctness of the theoretical analysis is verified by the time-domain simulation method, and the advantages and disadvantages of V-I and I-V droop control for the load power sharing are systematically compared in this paper. For multiple paralleled Boost DC/DC converters with resistance load, the stability region of controller parameters does not change with the increase of the number of paralleled units. The decrease of virtual impedance in V-I droop system, or the increase of virtual impedance in I-V droop system will lead to the deterioration of system stability. For multiple paralleled Boost DC/DC converters with constant power load, the change of the load capacity of the system is consistent with the stability. With the same virtual impedance, the load capacity of multiple paralleled V-I droop system is greater than that of I-V droop system. This paper provides general design rules for two types of droop control in practical engineering applications of parallel Boost DC/DC converters.
直流配电系统 / Boost DC/DC变换器 / 稳定性分析 / V-I/I-V下垂控制 / 恒功率负荷
DC distribution system / boost DC/DC converter / stability analysis / V-I/I-V droop control / constant power load
| [1] |
张勇军, 刘子文, 宋伟伟, 等. 直流配电系统的组网技术及其应用[J]. 电力系统自动化, 2019, 43(23): 39-49.
|
| [2] |
|
| [3] |
|
| [4] |
王皓界. 直流微电网动态特性分析与控制[D]. 北京: 华北电力大学, 2018.
|
| [5] |
|
| [6] |
|
| [7] |
朱珊珊, 汪飞, 郭慧, 等. 直流微电网下垂控制技术研究综述[J]. 中国电机工程学报, 2018, 38(1): 72-84, 344.
|
| [8] |
王子鹏, 郑丽君, 吕世轩. 考虑多储能系统功率分配的独立直流微电网协调控制策略[J]. 电力建设, 2021, 42(4): 89-96.
针对多源储结构的独立直流微电网,提出考虑多储能系统功率分配的独立直流微电网协调控制策略,以实现源储能源利用率最大化与多储能系统间功率合理分配两方面的平衡控制,提升微网持续供电能力。根据直流母线电压信号将微网系统运行划分为5种工作模式,以协调源储运行,保证光伏能源利用率最大化及储能系统出力充足。同时,直流微电网工作模式切换过程中源储控制器保持不变,并根据当前运行状态自动调节自身运行曲线,维持系统功率平衡和母线电压稳定。其中,基于自适应功率控制的光伏系统控制方法根据母线电压自动调节光伏系统运行点追踪或偏离最大功率点,实现最大功率点跟踪(maximum power point tracking,MPPT)模式与降功率模式间的平滑切换。其次,基于荷电状态(state of charge,SOC)的自适应功率下垂控制器根据储能单元自身SOC调节其下垂曲线,实现系统功率在多储能单元间的动态分配,避免过充过放。最后,通过搭建Matlab /Simulink 仿真模型,验证了所提方法的有效性。
A coordinated control for islanded DC microgrid considering power sharing of multiple energy storages is proposed to realize the balance control of the energy utilization maximization and the reasonable power sharing among multiple energy storages. The operation of the DC Microgrid is divided into five working modes according to the DC bus voltage. During mode transition, control structure of each unit keeps unchanged, and its droop curve can be adjusted adaptively according to current operating state. The coordinated operation of source and storage maintains the system power balance and bus voltage stability, which maximize the utilization rate of photovoltaic energy and ensures sufficient output of energy storage. Firstly, an adaptive power control strategy is applied to PV converters, which is based on automatic regulate the output power of PV tracking or off the maximum power point according to the DC bus voltage and realizes the smooth switching between maximum power point tracking (MPPT) mode and off-MPPT mode. Secondly, an adaptive droop control strategy based on the state of charge is designed for energy storages, which realizes the reasonable distribution of system power by multiple energy storage units according to their SOC and avoids excessive discharge or depth charge. Finally, the control strategy is verified by simulation with Matlab/Simulink. |
| [9] |
|
| [10] |
朱天丽. 船舶直流微电网稳定性分析[D]. 天津: 天津工业大学, 2020.
|
| [11] |
朱晓荣, 李铮. 多换流器直流微电网稳定性分析[J]. 电网技术, 2021, 45(4): 1400-1410.
|
| [12] |
|
| [13] |
田艳军, 陈映妃, 王慧, 等. 光伏级联DC/DC变换器模式切换稳定性分析及降压运行策略[J]. 电力建设, 2020, 41(1): 97-105.
在光伏直流升压汇集系统中,光伏侧DC/DC变换器通过级联拓扑可实现光伏功率升压直流送出。当光伏输入侧功率差异较大时,级联变换器会在最大功率点跟踪模式和定电压模式间切换,模式切换控制会引起系统稳定性变化。文章以级联隔离升压全桥变换器为研究对象,建立变换器在电导增量法-最大功率点跟踪控制、定电压控制下的小信号输出阻抗模型和级联系统等效阻抗模型,根据阻抗稳定性判据评估控制模式切换下系统稳定性差异。当变换器由最大功率点跟踪模式切换为定电压模式时会降低系统稳定性能,且随着切换控制模式模块数量的增多稳定性显著减小。在此情况下,可采用母线电压降压运行的方案,尽可能使光伏侧DC/DC变换器工作在最大功率点跟踪模式,以维持系统的稳定性。在Matlab/Simulink中搭建级联系统仿真模型,验证了理论分析的正确性。
In the photovoltaic DC boost collection system, DC/DC converters on the photovoltaic side realize power transmission through the cascaded topology. However, when the input photovoltaic power is different greatly, the cascaded converter switches between the maximum power point tracking (MPPT) mode and the constant voltage mode, and the mode switching control causes the system stability change. In this paper, the isolated boosting full-bridge converter is taken as the research object, and the small-signal model of the converter output impedance under the control of incremental conductivity method-MPPT and constant voltage is established, and then the equivalent impedance model of cascaded system is deduced. According to the impedance stability criterion, the difference of system stability under control mode switching is evaluated. The results show that the stability of the system is reduced when the converter is switched from the MPPT mode to the constant voltage mode, and the stability is significantly deteriorated as the number of switching control mode modules increases. Therefore this paper proposes to decrease the bus voltage to maintain PV-side DC/DC converter within the MPPT control mode. Finally, a simulation model of the cascaded system is built in Matlab/Simulink to verify the correctness of the theoretical analysis.
|
| [14] |
郭力, 冯怿彬, 李霞林, 等. 直流微电网稳定性分析及阻尼控制方法研究[J]. 中国电机工程学报, 2016, 36(4): 927-936.
|
| [15] |
古强, 王荣杰. 带恒功率负载的Boost变换器建模与稳定性分析[J]. 集美大学学报(自然科学版), 2020, 25(1): 57-62.
|
| [16] |
|
| [17] |
林刚, 李勇, 王姿雅, 等. 低压直流配电系统谐振机理分析与有源抑制方法[J]. 电网技术, 2017, 41(10): 3358-3366.
|
| [18] |
|
| [19] |
|
AI小编
/
| 〈 |
|
〉 |