计及限电不确定性的园区微电网燃气轮机与空调建筑集群多时间尺度协同调度

何华绅, 王玉玺, 随权, 翁汉琍, 杨佳辉, 姚林伟

电力建设 ›› 0

PDF(575 KB)
PDF(575 KB)
电力建设 ›› 0

计及限电不确定性的园区微电网燃气轮机与空调建筑集群多时间尺度协同调度

  • 何华绅1, 王玉玺2, 随权1, 翁汉琍3, 杨佳辉1, 姚林伟1
作者信息 +

Multi-Time-Scale Coordinated Scheduling of Micro-Turbine and Air-Conditioning Building Clusters in Campus Microgrid Considering Load Curtailment Uncertainty

  • HE Huashen1, WANG Yuxi2, SUI Quan1, WENG Hanli3, YANG Jiahui1, YAO Linwei1
Author information +
文章历史 +

摘要

【目的】 针对现有园区微电网仅依赖电源或空调负荷平抑波动导致运行成本较高,与电网交换功率不够平滑的问题,提出一种计及限电不确定性的园区微电网燃气轮机(micro-turbine,MT)与空调建筑集群多时间尺度协同调度策略。【方法】 首先,通过量化分析变频空调灵活用能特性,建立空调建筑虚拟储能模型。结合MT发电-能耗关系,提出MT-变频空调短时间尺度效能协同控制方法,实现功率波动的自适应平抑,继而,根据微电网能量供需平衡,构建MT与空调建筑长时间尺度协同运行模型。此外,分别采用鲁棒法和随机场景法刻画限电、可再生能源发电和负荷用能不确定性,设计兼容并网与孤岛运行模式的微电网多时间尺度灵活调度策略。最后,通过线性化将其转化为混合整数线性规划问题(mixed-integer linear programming,MILP)。【结果】 仿真算例表明,在微电网运行功率发生波动时,系统严格遵循效能协同控制方法,动态协调MT与虚拟储能的功率分配。所提调度策略在并网和孤岛运行模式下分别降低系统总成本10.1%和5.0%,有效缓解系统瘫痪的风险,实现可靠性与经济性的双重提升。【结论】 所提策略可充分挖掘MT与变频空调集群的协同调度潜力,灵活应对并网和孤岛运行场景,有效提升微电网经济性,为高比例可再生能源接入提供高效调度方案。

Abstract

[Objective] To address the high operational costs and non-smooth power exchange with the grid caused by existing campus microgrids relying solely on power sources or air-conditioning loads for fluctuation mitigation, this paper proposes a multi-timescale coordinated scheduling strategy for gas turbines (micro-turbine, MT) and air-conditioning building clusters in campus microgrids considering grid curtailment uncertainties. [Methods] First, a virtual energy storage model for air-conditioned buildings is established by quantitatively analyzing the flexible energy characteristics of variable-frequency air conditioners. Combined with the MT power-generation-energy-consumption relationship, a short-timescale efficiency-coordinated control method for MT and variable-frequency air conditioners is proposed to achieve adaptive power fluctuation mitigation. Subsequently, a long-timescale coordinated operation model between MT and air-conditioned buildings is constructed based on microgrid energy supply-demand relationships. Furthermore, robust optimization and stochastic scenario methods are employed to characterize uncertainties in grid curtailment, renewable generation, and load demand, designing a flexible multi-timescale scheduling strategy compatible with grid-connected and islanded modes. Finally, the model is linearized into a mixed-integer linear programming (MILP) problem. [Results] Simulation cases demonstrate that when microgrid power fluctuates, the system strictly follows the efficiency-coordinated control method to dynamically coordinate power allocation between MT and virtual energy storage. The proposed strategy reduces total system costs by 10.1% in grid-connected mode and 5.0% in islanded mode, effectively mitigating system collapse risks while enhancing both reliability and economic performance. [Conclusion] The proposed strategy fully exploits the coordinated scheduling potential of MT and variable-frequency air-conditioning clusters, flexibly adapts to grid-connected/islanded scenarios, significantly improves microgrid economics, and provides an efficient scheduling solution with high-penetration renewable energy integration.

关键词

变频空调集群 / 虚拟储能 / 协同调度 / 限电不确定性 / 并网和孤岛运行模式

Key words

variable frequency air conditioning cluster / virtual energy storage / collaborative scheduling / collaborative scheduling / grid-connection and island modes

引用本文

导出引用
何华绅, 王玉玺, 随权, 翁汉琍, 杨佳辉, 姚林伟. 计及限电不确定性的园区微电网燃气轮机与空调建筑集群多时间尺度协同调度[J]. 电力建设. 0
HE Huashen, WANG Yuxi, SUI Quan, WENG Hanli, YANG Jiahui, YAO Linwei. Multi-Time-Scale Coordinated Scheduling of Micro-Turbine and Air-Conditioning Building Clusters in Campus Microgrid Considering Load Curtailment Uncertainty[J]. Electric Power Construction. 0
中图分类号: TM   

参考文献

[1] 张智刚, 康重庆. 碳中和目标下构建新型电力系统的挑战与展望[J]. 中国电机工程学报, 2022, 42(08): 2806-2819.
ZHANG Zhigang, KANG Chongqing.Challenges and prospects for constructing the new-type power system towards a carbon neutrality future[J]. Proceeding of the CSEE, 2022, 42(08): 2806-2819.
[2] 丁长新, 王翔, 赵波, 等. 基于动态组网的园区微电网群运行优化[J]. 电网与清洁能源, 2024, 40(05): 1-9.
DING Changxin, WANG Xiang, ZHAO Bo, et al.Operation optimization for the industrial park microgrid cluster based on dynamic networking[J]. Power System and Clean energy, 2024, 40(05): 1-9.
[3] 许雨玲, 王磊, 江伟建, 等. 考虑源荷互动的微电网容量配置双层优化模型[J]. 浙江电力, 2024, 43(04): 29-39.
XU Yuling, WANG Lei, JIANG Weijian, et al.A dual-layer optimization model for capacity configuration in microgrids considering source-load interactions[J]. Zhejiang Electric Power, 2024, 43(04): 29-39.
[4] 马立红, 梁亚峰, 程西, 等. 计及构网型储能稳定拓展的微电网群优化运行[J]. 电力工程技术, 2024, 43(06): 214-222.
MA Lihong, LIANG Yafeng, CHENG Xi, et al.Optimal operation of microgrids considering stabilized expansion of grid-forming energy storage[J]. Electric Power Engineering Technology, 2024, 43(06): 214-222.
[5] 李洪美, 李香凡, 林志芳, 等. 计及车网互动的热电联供微电网优化调度[J]. 电网与清洁能源, 2024, 40(09): 63-73.
LI Hongmei, LI Xiangfan, LIN Zhifang, et al.Optimized scheduling of the combined heat and power microgrid considering vehicle-to-grid interaction[J]. Power System and Clean energy, 2024, 40(09): 63-73.
[6] 夏鑫, 钟浩, 张磊, 等. 计及动态电价的电动汽车参与微电网调度双层优化策略[J]. 电力工程技术, 2024, 43(03): 140-150.
XIA Xin, ZHONG Hao, ZHNAG Lei, et al.A two-layer optimization strategy for electric vehicles participating in microgrid scheduling considering dynamic electricity prices[J]. Electric Power Engineering Technology, 2024, 43(03): 140-150.
[7] 苏建军, 郭跃进, 刘萌, 等. 紧急切负荷措施的温控负荷控制策略及概率模型[J]. 电网技术, 2018, 42(3): 911-917.
SU Jianjun, GUO Yuejin, LIU Meng, et al.Strategy and probability model for thermostatically controlled loads in emergency load shedding system[J]. Power System Technology, 2018, 42(3): 911-917.
[8] 王怡岚, 童亦斌, 黄梅, 等. 基于需求侧响应的空调负荷虚拟储能模型研究[J]. 电网技术, 2017, 41(02): 394-401.
WANG Yilan, TONG Yibin, HUANG Mei, et al.Research on virtual energy storage model of air conditioning loads based on demand response[J]. Power System Technology, 2017, 41(02): 394-401.
[9] 艾欣, 赵阅群, 周树鹏. 空调负荷直接负荷控制虚拟储能特性研究[J]. 中国电机工程学报, 2016, 36(06): 1596-1603.
AI Xin, ZHAO Yuequn, ZHOU Shupeng.Study on virtual energy storage features of air conditioning load drect load control[J]. Proceeding of the CSEE, 2016, 36(06): 1596-1603.
[10] X Wu, R Wu, D Wang, et al.Coordinated air conditioning resources scheduling with high photovoltaic penetrations[C] IEEE International Conference on Power System Technology (POWERCON), November 6-8, 2018, 2242-2248.
[11] D Wang, R Wu, X Li, et al.Two-stage optimal scheduling of air conditioning resources with high photovoltaic penetrations[J]. Journal of Cleaner Production, 2019, 241: 1-14.
[12] 高赐威, 张良杰, 杨晓梅. 中央空调负荷聚合及平抑风电出力波动研究[J]. 中国电机工程学报, 2017, 37(11): 3184-3191+3373.
GAO Ciwei, ZHANG Liangjie, YANG Xiaomei. Research on load aggregation of central air conditioning and its participation in the operation of power system[J]. Proceeding of the CSEE, 2017, 37(11): 3184-3191+3373.
[13] 胡志勇, 郭雪丽, 王爽, 等. 考虑响应意愿的电动汽车群-空调集群需求响应策略研究[J]. 电力系统保护与控制, 2023, 51(15): 109-119.
HU Zhiyong, GUO Xueli, WANG Shuang, et al.Demand response strategy for electric vehicles and air conditioners considering response willingness[J]. Power System Protection and Control, 2023, 51(15): 109-119.
[14] 杨秀, 傅广努, 刘方, 等. 考虑多重因素的空调负荷聚合响应潜力评估及控制策略研究[J]. 电网技术, 2022, 46(02): 699-714.
YANG Xiu, FU Guangnu, LIU Fang, et al.Potential evaluation and control strategy of air conditioning load aggregation response considering multiple factors[J]. Power System Technology, 2022, 46(02): 699-714.
[15] 乔锐勋, 王军华, 韦道明, 等. 计及后备储能及空调调度潜力的5G基站多时间尺度优化方法[J]. 电力系统自动化, 2023, 47(04): 111-120.
QIAO Ruixun, WANG Junhua, WEI Daoming, et al.Multi-time-scale optimization method for 5G base station considering backup energy storage and air-conditioning scheduling potential[J]. Automation of Electric Power Systems, 2023, 47(04): 111-120.
[16] 吴润基, 王冬骁, 谢昌鸿, 等. 空调负荷参与配电网电压管理的分布式控制方法[J]. 电力系统自动化, 2021, 45(06): 215-222.
WU Runji, WANG Dongxiao, XIE Changhong, et al.Distributed control method for air-conditioning load participating in voltage management of distribution network[J]. Automation of Electric Power Systems, 2021, 45(06): 215-222.
[17] 范德金, 张姝, 王杨, 等. 考虑用户调节行为多样性的空调负荷聚合商日前调度策略[J]. 电力系统保护与控制, 2022, 50(17): 133-142.
FAN Dejin, ZHANG Shu, WANG Yang, et al.Day ahead scheduling strategy for air conditioning load aggregators considering user regulation behavior diversity[J]. Power System Protection and Control, 2022, 50(17): 133-142.
[18] 郭旭歆, 高赐威, 王朝亮, 等. 基于中央空调虚拟储能模型的调峰策略研究[J]. 电力需求侧管理, 2022, 24(04): 42-46.
GUO Xuxin, GAO Ciwei, WANG Chaoliang, et al.Peak adjustment strategy based on central air conditioning virtual energy storage model[J]. Power Demand Side Management, 2022, 24(04): 42-46.
[19] 周星球, 郑凌蔚, 杨兰, 等. 考虑多重不确定性的综合能源系统日前优化调度[J]. 电网技术, 2020, 44(07): 2466-2473.
ZHOU Xingqiu, ZHENG Lingwei, YANG Lan, et al.Day-ahead optimal dispatch of an integrated energy system considering multiple uncertainty[J]. Power System Technology, 2020, 44(07): 2466-2473.
[20] 闫志彬, 李立, 阳鹏, 等. 考虑构网型储能支撑能力的微电网优化调度策略[J]. 中国电力, 2025, 58(02): 103-110.
YAN Zhibin, LI Li, YANG Peng, et al.Optimal Scheduling Strategy for Microgrid Considering the Support Capabilities of Grid Forming Energy Storage[J]. Electric Power, 2025, 58(02): 103-110.
[21] 李超杰, 严宇, 叶宇成, 等. 基于自适应SMPC的风-光-储混合微电网实时优化调度研究[J]. 青海电力, 2024, 43(03): 5-12+36.
LI Chaojie, YAN Yu, YE Yucheng, et al. Adaptive SMPC-based real-time optimal scheduling of hybrid micro-grid with wind-optical-storage[J]. Qinghai Electric Power, 2024, 43(03): 5-12+36.
[22] 随权, 林湘宁, 魏繁荣, 等. 一种考虑网络攻击风险的智能微网新型调度策略[J]. 中国电机工程学报, 2021, 41(15): 5179-5189.
SUI Quan, LIN Xiangning, WEI Fanrong, et al.A novel scheduling strategy for smart microgrids considering cyber attack[J]. Proceeding of the CSEE, 2021, 41(15): 5179-5189.
[23] 林顺富, 倪凌凡, 姜恩宇, 等. 计及风电出力不确定性的海上孤岛微电网动态激励优化调度[J]. 电网技术, 2023, 47(06): 2353-2369.
LIN Shunfu, NI Lingfan, JIANG Enyu, et al.Dynamic excitation optimization scheduling of offshore isolated microgrid with uncertainty of wind power[J]. Power System Technology, 2023, 47(06): 2353-2369.
[24] 师旭露, 邢海军, 汪航, 等. 基于机会约束的风光制氢合成氨系统低碳优化调度[J/OL]. 高电压技术, 1-14[2025-04-04].
SHI Xulu, XING Haijun, WANG Hang, et al.Low-carbon dispatch of wind and solar power-based hydrogen production and ammonia synthesis system based on chance constraints[J/OL]. High Voltage Engineering, 1-14[2025-04-04].
[25] 王皓, 艾芊, 吴俊宏, 等. 基于交替方向乘子法的微电网群双层分布式调度方法[J]. 电网技术, 2018, 42(06): 1718-1727.
WANG Hao, AI Qian, WU Junhong, et al.Bi-Level distributed optimization for microgrid clusters based on alternating direction method of multipliers[J]. Power System Technology, 2018, 42(06): 1718-1727.
[26] 张津珲, 王旭, 蒋传文, 等. 计及交通流量不确定性的多网耦合综合能源系统优化调度方法[J]. 电网技术, 2019, 43(09): 3081-3093.
ZHANG Jinhui, WANG Xu, JIANG Chuanwen, et al.Optimal scheduling method of multi-network regional integrated energy system based on traffic flow uncertainty[J]. Power System Technology, 2019, 43(09): 3081-3093.
[27] 马国真, 林毓军, 张泽亚, 等. 计及源荷多重不确定性的综合能源系统鲁棒经济调度方法[J]. 电力系统保护与控制, 2021, 49(20): 43-52.
MA Guozhen, LIN Yujun, ZHANG Zeya, et al.A robust economic dispatch method for an integrated energy system considering multiple uncertainties of source and load[J]. Power System Protection and Control, 2021, 49(20): 43-52.
[28] 殷爽睿, 艾芊, 王大鹏, 等. 考虑空调负荷虚拟储能的产消者鲁棒日前申报策略[J]. 电力系统自动化, 2020, 44(04): 24-34.
YIN Shuangrui, AI Qian, WANG Dapeng, et al.Day-ahead robust bidding strategy for prosumer considering virtual energy storage of air-conditioning load[J]. Automation of Electric Power Systems, 2020, 44(04): 24-34.
[29] 郭方洪, 冯秀荣, 杨淏, 等. 基于数据模型双驱动的新能源微电网分布鲁棒优化调度[J]. 电力系统自动化, 2024, 48(20): 36-47.
GUO Fanghong, FENG Xiurong, YANG Hao, et al.Dual-data-model-driven distributionally robust optimal scheduling of renewable energy microgrid[J]. Automation of Electric Power Systems, 2024, 48(20): 36-47.
[30] 张亚超, 谢仕炜, 朱蜀. 多区域互联电-气耦合系统分散协调分布鲁棒优化调度[J]. 电力系统自动化, 2022, 46(19): 31-42.
ZHANG Yachao, XIE Shiwei, ZHU Shu, et al.Decentralized coordinated distributionally robust optimal scheduling of multi-area interconnected electricity-gas coupling system[J]. Automation of Electric Power Systems, 2022, 46(19): 31-42.
[31] 晋旭东, 孙磊, 丁明, 等. 考虑用户响应不确定性的园区综合能源系统分布鲁棒低碳调度[J]. 电力系统自动化, 2023, 47(16): 10-21.
JIN Xudong1, SUN Lei1, DING Ming, et al. Distributionally robust low-carbon dispatch of park-level integrated energy system considering uncertainty of customer response, 2023, 47(16): 10-21.
[32] 姚俊伟, 何奇, 张宇, 等. 考虑风电出力不确定性的微电网两阶段鲁棒优化调度模型[J]. 浙江电力, 2024, 43(11): 106-115.
YAO Junwei, HE Qi, ZHANG Yu, et al.A two-stage robust optimal scheduling model for microgrids accounting for the un- certainties in wind turbine output[J]. Zhejiang Electric Power, 2024, 43(11): 106-115.
[33] 曹彬. 气候与建筑环境对人体热适应性的影响研究[D]. 清华大学, 2012.
CAO Bin.Research on the Impacts of Climate and Built Environment on Human Thermal Adaptation[D]. Tsinghua Univers, 2012, 47(03): 1-8.
[34] 张勇军, 郝金宝. 考虑用户舒适度补偿的空调负荷优化调度模型[J]. 华南理工大学学报(自然科学版), 2019, 47(03): 1-8.
ZHANG Yongjun, HAO Jinbao.Air conditioning load optimization dispatching model considering users' comfort compensation[J]. Journal of South China University of Technology (Natural Science Edition), 2019, 47(03): 1-8.
[35] SONG Meng, GAO Ciwei, YAN Huaguang, et al.Thermal Battery Modeling of Inverter Air Conditioning for demand response[J]. IEEE Transactions on smart grid, 2018, 9(06): 5522-5534.
[36] 高红均, 郭明浩, 刘俊勇, 等. 从四川高温干旱限电事件看新型电力系统保供挑战与应对展望[J]. 中国电机工程学报, 2023, 43(12): 4517-4538.
GAO Hongjun, GUO Minghao, LIU Junyong, et al.Power supply challenges and prospects in new power system from sichuan electricity curtailment events caused by high-temperature drought weather[J]. Proceeding of the CSEE, 2023, 43(12): 4517-4538.
[37] Pan Guangsheng, GU Wei, LU Yuping, et al.Optimal Planning for Electricity-Hydrogen Integrated Energy System Considering Power to Hydrogen and Heat and Seasonal Storage[J]. IEEE Transactions on Sustainable Energy, 2020, 11(04): 2662-2676.
[38] 潘帅琪, 魏繁荣, 林湘宁, 等. 光伏建筑一体化社区热电联供调度策略[J]. 电力系统保护与控制, 2022, 50(04): 24-35.
PAN Shuaiqi, WEI Fengsheng, LIN Xiangning, et al.Dispatch strategy of heat and power cogeneration in building integrated photovoltaic[J]. Power System Protection and Control, 2022, 50(04): 24-35.
[39] LIU Guodong, XU Yan, Kevin Tomsovic.Bidding Strategy for Microgrid in Day-Ahead Market Based on Hybrid Stochastic/Robust Optimization[J]. IEEE Transactions on Smart Grid, 2016, 7(01): 227-237.
[40] 朱宗耀, 王秀丽, 吴雄, 等. 复合储能参与电能量及辅助服务市场的运行策略[J]. 电力系统自动化, 2023, 47(18): 80-90.
ZHU Zhongyao, WANG Xiuli, WU Xiong, et al.Operation strategy for composite energy storage participating in electric energy and ancillary service markets[J]. Automation of Electric Power Systems, 2023, 47(18): 80-90.

基金

国家自然科学基金资助项目(52077120)

PDF(575 KB)

Accesses

Citation

Detail

段落导航
相关文章
AI小编
你好!我是《电力建设》AI小编,有什么可以帮您的吗?

/