考虑电力系统灵活爬坡需求的火电厂碳捕集改造方案优化方法

邬凯浪, 单兰晴, 薄利明, 程雪婷, 刘新元, 蔡帜, 郭鸿业, 李寅晓

电力建设 ›› 0

PDF(542 KB)
PDF(542 KB)
电力建设 ›› 0

考虑电力系统灵活爬坡需求的火电厂碳捕集改造方案优化方法

  • 邬凯浪1, 单兰晴1, 薄利明2, 程雪婷2, 刘新元2, 蔡帜3, 郭鸿业1, 李寅晓1
作者信息 +

Optimization Methodology for Carbon Capture Reformation Schemes in Thermal Power Plants Considering the Power Flexible Ramping Demand

  • WU Kailang1, SHAN Lanqing1, BO Liming2, CHENG Xueting2, LIU Xinyuan2, CAI Zhi3, GUO Hongye1, LI Yinxiao1
Author information +
文章历史 +

摘要

【目的】 在高比例可再生能源接入背景下,为满足电力系统灵活性和低碳需求,提出了考虑电力系统灵活爬坡需求的火电厂碳捕集改造方案优化方法。【方法】 首先,针对大规模风电和光伏接入引发的电力系统爬坡需求攀升现象,建立电力系统灵活性需求计算模型。其次,建立考虑碳捕集改造的火电机组灵活运行模型并量化其灵活爬坡供应能力。然后,考虑负荷、新能源的不确定性,引入灵活爬坡需求约束,建立基于模糊机会约束的火电厂碳捕集改造规划模型,对火电机组碳捕集改造规划问题和火电机组运行优化问题进行联合求解,得到火电最优碳捕集改造方案。最后,结合算例验证了碳捕集改造方案优化方法的有效性,并分析不同单位碳排放惩罚成本、新能源接入比例及置信水平对碳捕集改造方案的影响。【结果】 仿真结果表明,在对火电机组进行最优碳捕集改造之后,电力系统的碳排放显著降低,可再生能源弃电率显著减少,系统的总运行成本降低了9.44%。【结论】 通过对火电机组进行最优碳捕集改造,能够提升火电机组的出力下调空间和爬坡能力,在降低电力系统碳排放的同时促进可再生能源的消纳,提升系统运行的经济性。

Abstract

[Objective] In the context of high percentage renewable energy integration, in order to meet the system flexibility and low-carbon demand, an optimization method for carbon capture reformation of thermal power plants considering the power flexible ramping demand was proposed. [Methods] Firstly, a calculation model for power system flexibility demand was established to address the ramping demand surge caused by large-scale wind and photovoltaic power integration. Secondly, a flexible operation model of thermal power units considering carbon capture reformation was established and its flexible ramping supply capacity is quantified. Then, considering the uncertainty of load and renewable energy, a flexible ramping demand constraint was introduced, and a fuzzy opportunity-constrained model was introduced to establish a carbon capture reformation planning model of thermal power plants. This model jointly solved the carbon capture reformation planning problem and the operation optimization problem of thermal power units to obtain the optimal carbon capture reformation solution. Finally, the effectiveness of the planning model was verified with examples, and the impacts of different unit carbon penalty, renewable energy integration ratios, and confidence level on the carbon capture reformation results were analyzed. [Results] The simulation results show that after the optimal carbon capture reformation of thermal power plants, the carbon emission of the power system is significantly reduced, the renewable energy curtailment rate is significantly reduced, and the total operating cost of the system is reduced by 9.44%. [Conclusions] Through the optimal carbon capture reformation of thermal power plants, the output downward regulation space and ramping capability of thermal power plants can be improved, which can promote the accommodation of renewable energy while reducing the carbon emission of the power system, thus enhancing the economic efficiency of system operation.

关键词

灵活爬坡需求 / 火电碳捕集改造 / 模糊机会约束 / 经济调度 / 碳捕集

Key words

flexible ramping demand / carbon capture reformation of thermal power units / fuzzy opportunity constraint / economic dispatch / carbon capture

引用本文

导出引用
邬凯浪, 单兰晴, 薄利明, 程雪婷, 刘新元, 蔡帜, 郭鸿业, 李寅晓. 考虑电力系统灵活爬坡需求的火电厂碳捕集改造方案优化方法[J]. 电力建设. 0
WU Kailang, SHAN Lanqing, BO Liming, CHENG Xueting, LIU Xinyuan, CAI Zhi, GUO Hongye, LI Yinxiao. Optimization Methodology for Carbon Capture Reformation Schemes in Thermal Power Plants Considering the Power Flexible Ramping Demand[J]. Electric Power Construction. 0
中图分类号: TM74   

参考文献

[1] 全球能源互联网发展合作组织. (2021). 中国2060年前碳中和研究报告. 北京:中国电力出版社.
Global Energy Internet Development Cooperation Organization. (2021). China Carbon Neutrality Study to 2060. Beijing: China Electric Power Press.
[2] IPCC. Mitigation of climate change. Contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change[M]. Cambridge University Press, Cambridge, United Kingdom, 2014.
[3] 郭鸿业,陈启鑫,夏清等.电力市场中的灵活调节服务:基本概念、均衡模型与研究方向[J].中国电机工程学报,2017,37(11):3057-3066+3361.
GUO Hongye, CHEN Qixin, XIA Qing, et al. Flexible ramping product in electricity markets: basic concept, equilibrium model and research prospect[J]. Proceedings of the CSEE, 2017, 37(11): 3057-3066+3361.
[4] FOWIE M.The duck has landed[EB/OL]. [2016-05-02].https://energyathaas.wordpress.com/2016/05/02/theduck-has-landed/.
[5] ZHANG Hengxu, CAO Yongji, ZHANG Yi, et al.Quantitative synergy assessment of regional wind-solar energy resources based on MERRA reanalysis data[J]. Applied Energy, 2018, 216:172-182.
[6] California Independent System Operator.Addendum-draft final technical appendix-flexible ramping product [R].2016.
[7] 曾鸣,王雨晴.提升电力系统综合调节能力支撑新型电力系统建设——解读《电力并网运行管理规定-电力辅助服务管理办法》[J].中国电力企业管理,2022,(01):8-10.
ZENG Ming, WANG Yuqing.Enhancing the comprehensive regulation capability of the power system to support the construction of new power systems—interpreting the "regulations for power grid operation and management" and "management measures for power ancillary services"[J]. China Electric Power Enterprise Management, 2022, (01): 8-10.
[8] 康重庆,姚良忠.高比例可再生能源电力系统的关键科学问题与理论研究框架[J].电力系统自动化,2017,41(09):2-11.
KANG Chongqing, YAO Liangzhong.Key scientific issues and theoretical research framework for power systems with high proportion of renewable energy[J]. Automation of Electric Power Systems, 2017, 41(09): 2-11.
[9] 牟春华,居文平,黄嘉驷,等.火电机组灵活性运行技术综述与展望[J].热力发电,2018,47(05):1-7.
MU Chunhua, JU Wenping, HUANG Jiasi, et al.Review and prospect of technologies of enhancing the flexibility of thermal power units[J]. Thermal Power Generation, 2018, 47(5): 1-7.
[10] 康重庆,陈启鑫,夏清. 低碳电力技术的研究展望[J]. 电网技术,2009,33(2):1-7.
KANG Chongqing, CHEN Qixin, XIA Qing.Prospects of low-carbon electricity[J]. Power System Technology, 2009, 33(2):1-7.
[11] 程耀华,杜尔顺,田旭,等.电力系统中的碳捕集电厂:研究综述及发展新动向[J].全球能源互联网,2020,3(04):339-350.
CHENG Yaohua, DU Ershun, TIAN Xu, et al.Carbon Capture Power Plants in Power Systems: Review and Latest Research Trends[J]. Journal of Global Energy Interconnection. 2020, 3(04): 339-350.
[12] 袁鑫,刘骏,陈衡,等. 碳捕集技术应用对燃煤机组调峰能力的影响[J]. 发电技术, 2024, 45(03): 373-381.
YUAN Xin, LIU Jun, CHEN Heng, et al.Effect of Carbon Capture Technology Application on Peak Shaving Capacity of Coal-Fired Units[J]. Power Generation Technology, 2024, 45(03): 373-381.
[13] 韩丽,王冲,于晓娇,等.考虑风电爬坡灵活调节的碳捕集电厂低碳经济调度[J].电工技术学报,2024,39(07):2033-2045.
HAN Li, WANG Chong, YU Xiaojiao, et al.Low-Carbon and Economic Dispatch Considering the Carbon Capture
14 Power Plants with Flexible Adjustment of Wind Power Ramp[J]. Transactions of China Electrotechnical Society, 2024, 39(07): 2033-2045.
[14] 寇洋,武家辉,张华,等.考虑碳捕集与CVaR的电力系统低碳经济调度[J].电力系统保护与控制,2023,51(11):131-140.
KOU Yang, WU Jiahui, ZHANG Hua, et al.Low carbon economic dispatch for a power system considering carbon capture and CVaR [J/OL]. Power System Protection and Control, 2023,51(11):131-140.
[15] 寇洋,武家辉,江欢,等.计及碳捕集和旋转备用配置的低碳优化运行[J].电力建设,2024,45(01):102-111.
KOU Yang, WU Jiahui, JIANG Huan, et al.Low carbon optimized operation considering carbon capture and spinning reserve capacity[J]. Electric Power Construction, 2024, 45(01): 102-111.
[16] 舒征宇,贾可凡,李黄强,等. 计及碳捕集的含新能源电网低碳调度策略 [J]. 电力工程技术, 2024, 43 (03): 78-87+139.
SHU Zhengyu, JIA Kefan, LI Huangqiang, et al. Low-carbon dispatching strategy for new energy grid considering carbon capture plant[J]. Electric Power Engineering Technology, 2024, 43 (03): 78-87+139.
[17] 陈登勇,刘方,刘帅.基于阶梯碳交易的含P2G-CCS耦合和燃气掺氢的虚拟电厂优化调度[J].电网技术,2022,46(06):2042-2054.
CHEN Dengyong, LIU Fang, LIU Shuai.Optimization of virtual power plant scheduling coupling with P2G-CCS and doped with gas hydrogen based on stepped carbon trading[J]. Power System Technology, 2022, 46(06): 2042-2054.
[18] 赵振宇,李炘薪. 基于阶梯碳交易的碳捕集电厂-电转气虚拟电厂低碳经济调度[J]. 发电技术, 2023, 44(06): 769-780.
ZHAO Zhenyu, LI Xinxin.Low-Carbon Economic Dispatch Based on Ladder Carbon Trading Virtual Power Plant Considering Carbon Capture Power Plant and Power-to-Gas[J]. Power Generation Technology, 2023, 44(06): 769-780.
[19] 李逸超,胥栋,徐刚,等. 计及碳捕集和多能流的虚拟电厂多目标优化调度[J]. 浙江电力, 2023, 42(10): 34-44.
LI Yichao, XU Dong, XU Gang, et al.Multi-objective optimal scheduling of virtual power plant considering carbon capture and multi-energy flow[J]. Zhejiang Electric Power, 2023, 42(10): 34-44.
[20] 贠保记,张恩硕,张国,等.考虑综合需求响应与“双碳”机制的综合能源系统优化运行[J].电力系统保护与控制,2022,50(22).
YUN Baoji, ZHANG Enshuo, ZHANG Guo, et al.Optimal operation of an integrated energy system considering integrated demand response and a "dual carbon "mechanism[J]. Power System Protect and Control, 2022, 50(22).
[21] 冯帅,袁至,李骥,等. 碳交易背景下基于综合协调储能系统的碳捕集电厂优化调度[J]. 中国电力, 2023, 56(06): 139-147.
FENG Shuai, YUAN Zhi, LI Ji, et al.Optimal Scheduling of Carbon Capture Power Plants Based on Integrated Coordinated Energy Storage System under the Background of Carbon Trading[J]. Electric Power, 2023, 56(06): 139-147.
[22] 李畸勇,郑一飞,刘斌,等. 基于主从博弈的含碳捕集与热电联产综合能源系统优化运行[J]. 电测与仪表, 2024, 61(06): 10-19.
LI Jiyong, ZHENG Yifei, LIU Bin, et al.Optimal operation of an integrated energy system with carbon capture system and combined heating and power based on a master-slave game[J]. Electrical Measurement & Instrumentation, 2024, 61(06): 10-19.
[23] 轩昂,刘骏,彭维珂,等.面向煤制氢电厂CCUS改造的规划方法及碳足迹评估[J/OL].中国电机工程学报,1-13[2024-08-09].
XUAN Ang, LIU Jun, PENG Weike, et al.Planning Method and Carbon Footprint Assessment for Retrofitting Coal-Based Hydrogen Power Plant with Carbon Capture, Utilization and Storage[J/OL]. Proceedings of the CSEE.1-13[2024-08-09].
[24] 邹世豪,曹永吉,张恒旭,等.考虑碳捕集电厂运行灵活性的网-储联合规划[J/OL].高电压技术,1-14[2024-08-09].
ZOU Shihao1, CAO Yongji2, ZHANG Hengxu1, et al. Joint Grid-storage Planning Considering Operational Flexibility of Carbon Capture Power Plant[J/OL].High Voltage Engineering. 1-14[2024-08-09].
[25] 卢志刚,祁艳君,杨俊强等.碳捕集系统在火电厂中的优化配置[J].电力系统自动化,2011,35(07):34-37+85.
LU Zhigang, QI Yanjun, YANG Junqiang, et al. Optimal allocation of carbon capture systems in power plants[J]. Automation of Electric Power Systems, 2011, 35(07): 34-37+85.
[26] 卢志刚,夏明昭,张晓辉.基于多阶段减排规划的发电厂碳捕集系统优化配置[J].中国电机工程学报,2011,31(35):65-71.
LU Zhigang, XIA Mingzhao, ZHANG Xiaohui.Carbon capture systems optimal allocation scheme for multi-stage emission reduction planning in power plants[J]. Proceedings of the CSEE, 2011, 31(35): 65-71.
[27] 季震,陈启鑫,张宁等.含碳捕集电厂的低碳电源规划模型[J].电网技术,2013,37(10):2689-2696.
JI Zhen, CHEN Qixin, ZHANG Ning, et al.Low-carbon generation expansion planning model incorporating carbon capture power plant[J]. Power System Technology, 2013, 37(10): 2689-2696.
[28] 钟嘉庆,王一鸣,赵志锋,等.低碳电源规划不确定性多目标鲁棒优化研究[J].太阳能学报,2020,41(09):114-120.
Zhong Jiaqing, Wang Yiming, Zhao Zhifeng, et al.Research on multi-objective robust optimization about low carbon generation expansion planning considering uncertainty[J]. Acta Energiae Solaris Sinica, 2020, 41(09): 114-120.
[29] 徐浩,李华强.火电机组灵活性改造规划及运行综合随机优化模型[J].电网技术,2020,44(12):4626-4638.
Xu hao, Li huaqiang. Planning and operation stochastic optimization model of power systems considering the flexibility reformation[J]. Power System Technology, 2020, 44(12): 4626-4638.
[30] 杨寅平,曾沅,秦超等.面向深度调峰的火电机组灵活性改造规划模型[J].电力系统自动化,2021,45(17):79-88.
YANG Yinping, ZENG yuan, QIN Chao, et al. Planning model for flexibility reformation of thermal power units for deep peak regulation[J]. Automation of Electric Power Systems, 2021, 45(17): 79-88.
[31] 山东电力爬坡辅助服务市场交易规则 (征求意见稿)[R].山东电力爬坡辅助服务市场交易规则 (征求意见稿)[R]. 山东:山东省电力交易中心,2023.
[32] 杨雪,王明强,胡召永,等.精细考虑时刻间净负荷波动不确定性的机组组合[J].高电压技术,2023,49(11):4839-4848.
YANG Xue, WANG Mingqiang, HU Zhaoyong, et al.Unit Commitment Considering Fluctuation Uncertainty of Net Load Between Adjacent Periods[J]. High Voltage Engineering. 2023, 49(11): 4839-4848.
[33] 胡晓静,李慧,崔晖,等.考虑灵活爬坡辅助服务和弃风惩罚的现货电能量市场出清模型[J].电力系统保护与控制,2024,52(04):133-143.
HU Xiaojing, LI Hui, CUI Hui, et al.Cleaning model of a spot electric energy market considering flexible ramping auxiliary services and wind curtailment penalty[J]. Power System Protection and Control, 2024, 52(04):133-143.
[34] 陈启鑫,季震,康重庆等.碳捕集电厂不同运行方式的电碳特性分析[J].电力系统自动化,2012,36(18):109-115+152.
CHEN Qixin, JI Zhen, KANG Chongqing, et al. Analysis on relation between power generation and carbon emission of carbon capture power plants in different operation modes [J]. Automation of Electric Power Systems, 2012, 36(18): 109-115+152.
[35] 崔杨,邓贵波,曾鹏等.计及碳捕集电厂低碳特性的含风电电力系统源-荷多时间尺度调度方法[J].中国电机工程学报, 2022,42(16):5869-5886+6163.
CUI Yang,DENG Guibo,ZENG Peng,et al. Multi-Time Scale Source-load Dispatch Method of Power System With Wind Power Considering Low-carbon Characteristics of Carbon Capture Power Plant [J]. Proceedings of the CSEE, 2022,42(16):5869-5886+6163.
[36] 崔杨,曾鹏,惠鑫欣,等.考虑碳捕集电厂综合灵活运行方式的低碳经济调度[J].电网技术,2021,45(05):1877-1886.
CUI Yang, ZENG Peng, HUI Xinxin, et al.Low-carbon Economic Dispatch Considering the Integrated Flexible Operation Mode of Carbon Capture Power Plant[J]. Power System Technology. 2021, 45(5): 1877-1885.
[37] 杨宇玄,高栋梁,陈一鸣,等.考虑碳捕集和气网混氢的气电耦合系统低碳经济调度[J].中国电力,2023,56(10):1-10.
YANG Yuxuan, GAO Dongliang, CHEN Yiming, et al.Low Carbon Economic Dispatch of Gas Electricity Coupling System Considering Carbon Capture and Hydrogen Mixing in Gas Grid[J]. Electric Power. 2023, 56(10): 1-10.
[38] 崔杨,周慧娟,仲悟之,等.考虑源荷两侧不确定性的含风电电力系统低碳调度[J].电力自动化设备,2020,40(11):85-93.
CUI Yang, ZHOU Huijuan, ZHONG Wuzhi, et al.Low-carbon scheduling of power system with wind power considering uncertainty of both source and load sides[J]. Electric power Automation equipment, 2020,40(11):85-93.
[39] 熊虎,向铁元,陈红坤,等.含大规模间歇式电源的模糊机会约束机组组合研究[J].中国电机工程学报,2013,33(13):36-44.
XIONG Hu,XIANG Tieyuan,CHEN Hongkun,et al.Research of fuzzy chance constrained unit commitment containing large scale intermittent power[J]. Proceedings of the CSEE, 2013,33(13): 36-44.
[40] 赵腾,邬炜,高艺.碳中和目标下实现碳循环的电力系统供需规划[J].电网技术,2022,46(12):4895-4907.
ZHAO, Teng, WU Wei, Gao Yi. Power System Demand and Supply Planning for Achieving Carbon Neutrality Considering Carbon Cycle Within Power and Gas Systems[J]. Power System Technology, 2022,46(12):4895-4907.
[41] 陈继明,徐乾,李勇,等.计及源荷不确定性和碳捕集虚拟电厂的电-气互联系统优化调度[J].太阳能学报,2023,44(10):9-18.
CHEN, Jiming, XU Qian, LI Yong, et al.Optimal dispatch of electricity-natural gas interconnection system considering source-load uncertainty and virtual power plant with carbon capture[J]. Acta Energiae Solaris Sinica, 2023,44(10):9-18.

基金

国家电网有限公司总部科技项目“面向新型电力系统的爬坡辅助服务市场关键技术研究及应用”(5108-202315041A-1-1-ZN)

PDF(542 KB)

Accesses

Citation

Detail

段落导航
相关文章
AI小编
你好!我是《电力建设》AI小编,有什么可以帮您的吗?

/