面向能源互联网的电-碳-氢耦合交易市场研究综述

蒋明轩, 卞艺衡, 李更丰, 黄玉雄, 张润凡

电力建设 ›› 0

PDF(873 KB)
PDF(873 KB)
电力建设 ›› 0

面向能源互联网的电-碳-氢耦合交易市场研究综述

  • 蒋明轩, 卞艺衡, 李更丰, 黄玉雄, 张润凡
作者信息 +

Review of the Research on the Electricity-Carbon-Hydrogen Coupling Trading Market under the Energy Internet

  • JIANG Mingxuan, BIAN Yiheng, LI Gengfeng, HUANG Yuxiong, ZHANG Runfan
Author information +
文章历史 +

摘要

【目的】当下世界各国都在积极推动能源转型和低碳发展,电力交易、碳交易和氢交易的耦合已成为我国能源行业发展的必然趋势。但多个系统下能源互济和信息交互的复杂度大大提升,为电-碳-氢耦合交易市场的发展带来了新的挑战。【方法】首先介绍电-碳市场和电-氢市场的研究现状,深入分析电-碳-氢市场的研究方法、耦合机制、交易模式、定价和出清机制;其次针对制约其发展的物理层面和信息层面的双重核心困境,提出构建面向能源互联网的电-碳-氢耦合交易市场的方案,分析能源互联网的参与机制和具体方法;最后从技术层面和市场层面提出支撑面向能源互联网的电-碳-氢市场发展的关键技术和研究要点。【结果】物理层面,能源互联网解决了电-碳-氢交易市场由于资源众多、交互关系繁杂而无法明确市场交易机制和决策规律的问题,实现能源产销规律和机制的厘清;信息层面,能源互联网基于信息技术和数据平台实现了电-碳-氢市场之间的数据匹配共享和信息透明公开,推动了能源分布式自主灵活交易,引导资源优化配置。【结论】探索针对面向能源互联网的电-碳-氢耦合交易市场关键技术和研究要点是打破现有市场发展困境的有效途径,为电-碳-氢交易市场构建方案的完善和发展提供可行的参考路径。

Abstract

[Objective] Nowadays, countries worldwide are actively promoting energy transition and low-carbon development, and the coupling of electricity trading, carbon trading and hydrogen trading has become an inevitable trend in developing China's energy industry. However, the complexity of energy mutualization and information interaction under multiple systems is greatly enhanced, which brings new challenges to developing the coupled electricity-carbon-hydrogen trading market. [Methods] This paper firstly introduces the research status quo of the electricity-carbon market and electricity-hydrogen market, and on this basis deeply analyzes the research methodology, coupling mechanism, trading mode and pricing and clearing mechanism of the electricity-carbon-hydrogen market; secondly, because of the double key dilemmas at the physical and information levels that constrain the development of the market, the construction of the electricity-carbon-hydrogen coupling market for the Energy Internet to solve the problem is put forward, and the participation mechanism and specific methods of the Energy Internet are analyzed; Finally, the key technologies and research points of the electricity-carbon-hydrogen market for the Energy Internet are summarized from the technical level and the market level. [Results] At the physical level, the Energy Internet solves the problem that the electricity-carbon-hydrogen market is unable to clarify the market trading mechanism and decision-making law due to a large number of resources and complicated interaction relations and realizes the clarification of the law and mechanism of energy production and marketing. At the information level, based on information technology and data platforms, the Energy Internet realizes data matching and sharing and information transparency and openness between the electricity-carbon-hydrogen markets, promotes autonomous and flexible distributed energy trading, and guides the optimal allocation of resources. [Conclusions] Exploring the key technologies and research points of the coupled electricity-carbon-hydrogen market for the Energy Internet is an effective way to break the dilemma of the development of the existing market, and to provide a feasible reference path for the improvement and development of the construction program of the electricity-carbon-hydrogen market.

关键词

能源互联网 / 电-碳-氢交易市场 / 耦合关系 / 交易模式 / 定价策略

Key words

energy internet / electricity-carbon-hydrogen market / coupling relationship / trading model / pricing strategy

引用本文

导出引用
蒋明轩, 卞艺衡, 李更丰, 黄玉雄, 张润凡. 面向能源互联网的电-碳-氢耦合交易市场研究综述[J]. 电力建设. 0
JIANG Mingxuan, BIAN Yiheng, LI Gengfeng, HUANG Yuxiong, ZHANG Runfan. Review of the Research on the Electricity-Carbon-Hydrogen Coupling Trading Market under the Energy Internet[J]. Electric Power Construction. 0
中图分类号: TM73   

参考文献

[1] International Energy Agency.CO2 emissions in 2023[R]. Paris: International Energy Agency, 2024.
[2] 国家统计局. 中华人民共和国2023年国民经济和社会发展统计公报[R]. 北京: 国家统计局, 2024.
[3] 周孝信, 陈树勇, 鲁宗相, 等. 能源转型中我国新一代电力系统的技术特征[J]. 中国电机工程学报, 2018, 38(7): 1893-1904, 2205.
ZHOU Xiaoxin, CHEN Shuyong, LU Zongxiang, et al.Technology features of the new generation power system in China[J]. Proceedings of the CSEE, 2018, 38(7): 1893-1904, 2205.
[4] 别朝红, 王旭, 胡源. 能源互联网规划研究综述及展望[J]. 中国电机工程学报, 2017, 37(22): 6445-6462, 6757.
BIE Zhaohong, WANG Xu, HU Yuan.Review and prospect of planning of energy Internet[J]. Proceedings of the CSEE, 2017, 37(22): 6445-6462, 6757.
[5] 王成山, 王守相. 分布式发电供能系统若干问题研究[J]. 电力系统自动化, 2008, 32(20): 1-4, 31.
WANG Chengshan, WANG Shouxiang.Study on some key problems related to distributed generation systems[J]. Automation of Electric Power Systems, 2008, 32(20): 1-4, 31.
[6] DING D.The impacts of carbon pricing on the electricity market in Japan[J]. Humanities and Social Sciences Communications, 2022, 9: 353.
[7] NELSON T, KELLEY S, ORTON F.A literature review of economic studies on carbon pricing and Australian wholesale electricity markets[J]. Energy Policy, 2012, 49: 217-224.
[8] ZHU B Z, HAN D, CHEVALLIER J, et al.Dynamic multiscale interactions between European carbon and electricity markets during 2005-2016[J]. Energy Policy, 2017, 107: 309-322.
[9] 李祥光, 谭青博, 李帆琪, 等. 电碳耦合对煤电机组现货市场结算电价影响分析模型[J]. 中国电力, 2024, 57(5): 113-125.
LI Xiangguang, TAN Qingbo, LI Fanqi, et al.Analysis model to study the influence of electrocarbon coupling on settlement price of coal power units in spot market[J]. Electric Power, 2024, 57(5): 113-125.
[10] 李彬, 潘雨情, 文华杰, 等. 基于碳减排的氢电资源耦合发展现状及展望[J]. 供用电, 2023, 40(10): 106-113.
LI Bin, PAN Yuqing, WEN Huajie, et al.Current status and prospects of hydrogen electricity resource coupling development based on carbon emission reduction[J]. Distribution & Utilization, 2023, 40(10): 106-113.
[11] 尚楠, 陈政, 卢治霖, 等. 电力市场、碳市场及绿证市场互动机理及协调机制[J]. 电网技术, 2023, 47(1): 142-154.
SHANG Nan, CHEN Zheng, LU Zhilin, et al.Interaction principle and cohesive mechanism between electricity market, carbon market and green power certificate market[J]. Power System Technology, 2023, 47(1): 142-154.
[12] 吴艳娟, 靳鹏飞, 刘长铖, 等. 基于奖惩阶梯型碳价机制的能源枢纽低碳优化策略[J]. 电力工程技术, 2024, 43(3): 88-98.
WU Yanjuan, JIN Pengfei, LIU Changcheng, et al.Low-carbon optimization strategy for energy hub based on reward-punishment ladder carbon price mechanism[J]. Electric Power Engineering Technology, 2024, 43(3): 88-98.
[13] 蒋玮, 单沫文, 邓一帆, 等. 虚拟电厂聚合电动汽车参与碳市场的优化调度策略[J]. 电力工程技术, 2023, 42(4): 13-22, 240.
JIANG Wei, SHAN Mowen, DENG Yifan, et al.Optimization strategy for aggregating electric vehicles through VPP to participate in the carbon market[J]. Electric Power Engineering Technology, 2023, 42(4): 13-22, 240.
[14] 杨昆达, 沈晓东. 基于碳交易机制和需求响应的配电网重构研究[J]. 电网与清洁能源, 2023, 39(4): 47-53.
YANG Kunda, SHEN Xiaodong.Research on distribution network reconfiguration based on carbon trading mechanism and demand response[J]. Power System and Clean Energy, 2023, 39(4): 47-53.
[15] MARIN G, MARINO M, PELLEGRIN C.The impact of the European emission trading scheme on multiple measures of economic performance[J]. Environmental and Resource Economics, 2018, 71(2): 551-582.
[16] AGUIAR-CONRARIA L, JOANA SOARES M, SOUSA R T.California's carbon market and energy prices: a wavelet analysis[J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376(2126): 20170256.
[17] 国家发展改革委, 国家能源局. 氢能产业发展中长期规划(2021—2035年)[R/OL]. 北京: 国家能源局, 2022. (2022-03-23)[2023-11-14]. http://zfxxgk.nea.gov.cn/2022-03/23/c_1310525630.htm.
[18] LI Y F, SHI X P, PHOUMIN H.A strategic roadmap for large-scale green hydrogen demonstration and commercialisation in China: a review and survey analysis[J]. International Journal of Hydrogen Energy, 2022, 47(58): 24592-24609.
[19] HESEL P, BRAUN S, ZIMMERMANN F, et al.Integrated modelling of European electricity and hydrogen markets[J]. Applied Energy, 2022, 328: 120162.
[20] 张泽熙, 杨争林, 郑亚先, 等. 电氢市场主体参与电力市场的路径及发展展望[J]. 电网技术, 2024, 48(4): 1403-1419.
ZHANG Zexi, YANG Zhenglin, ZHENG Yaxian, et al.The path and development prospects for the participation of hydrogen-electricity market participants in the electricity market[J]. Power System Technology, 2024, 48(4): 1403-1419.
[21] 黄思嘉, 陈卫中, 郑宁敏, 等. 融合碳交易的电力市场交易机制及交易模式探索[J]. 能源与环境, 2023(2): 65-67.
HUANG Sijia, CHEN Weizhong, ZHENG Ningmin, et al.Exploration on trading mechanism and trading mode of power market integrating carbon trading[J]. Energy and Environment, 2023(2): 65-67.
[22] 吴琪, 赵宣茗, 张佳诚, 等. 促进新能源消纳的电-碳市场耦合激励型出清机制[J]. 电力建设, 2023, 44(12): 14-27.
WU Qi, ZHAO Xuanming, ZHANG Jiacheng, et al.Electricity-carbon market coupling incentive clearing mechanism to promote consumption of new energy[J]. Electric Power Construction, 2023, 44(12): 14-27.
[23] TOSTADO-VÉLIZ M, REZAEE JORDEHI A, MANSOURI S A, et al. A local electricity-hydrogen market model for industrial parks[J]. Applied Energy, 2024, 360: 122760.
[24] 陈丽霞, 周云, 方陈, 等. 考虑碳交易的发电商和电力用户竞价博弈[J]. 电力系统及其自动化学报, 2019, 31(10): 66-72.
CHEN Lixia, ZHOU Yun, FANG Chen, et al.Bidding game between power generation companies and consumers considering carbon trade[J]. Proceedings of the CSU-EPSA, 2019, 31(10): 66-72.
[25] 靳冰洁, 李家兴, 彭虹桥, 等. 需求响应下计及电碳市场耦合的多元主体成本效益分析[J]. 电力建设, 2023, 44(2): 50-60.
JIN Bingjie, LI Jiaxing, PENG Hongqiao, et al.Cost-benefit analysis of multiple entities under the coupling of electricity and carbon trading market considering demand response[J]. Electric Power Construction, 2023, 44(2): 50-60.
[26] 万文轩, 冀亚男, 尹力, 等. 碳交易在综合能源系统规划与运行中的应用及展望[J]. 电测与仪表, 2021, 58(11): 39-48.
WAN Wenxuan, JI Yanan, YIN Li, et al.Application and prospect of carbon trading in the planning and operation of integrated energy system[J]. Electrical Measurement & Instrumentation, 2021, 58(11): 39-48.
[27] 王浩然, 冯天天, 崔茗莉, 等. 碳交易政策下绿氢交易市场与电力市场耦合效应分析[J]. 南方能源建设, 2023, 10(3): 32-46.
WANG Haoran, FENG Tiantian, CUI Mingli, et al.Analysis of coupling effect between green hydrogen trading market and electricity market under carbon trading policy[J]. Southern Energy Construction, 2023, 10(3): 32-46.
[28] YUAN J H, ZHANG W R, SHEN Q X, et al.The impact of electricity-carbon market coupling on system marginal clearing price and power supply cost[J]. Environmental Science and Pollution Research, 2023, 30(35): 84725-84741.
[29] PAN G, LU Y. A cooperative electricity hydrogen trading model to incentivize low-carbon travel using Nash bargaining theory[J]. CSEE Journal of Power and Energy Systems, 2023, Early Access Article, 1-10
[30] ZHONG W F, XIE S L, XIE K, et al.Cooperative P2P energy trading in active distribution networks: an MILP-based Nash bargaining solution[J]. IEEE Transactions on Smart Grid, 2021, 12(2): 1264-1276.
[31] 刘志坚, 余宸昕, 梁宁, 等. 考虑碳排放金融市场的风-氢-火多能耦合系统交易模型[J]. 电力自动化设备, 2023, 43(5): 138-144.
LIU Zhijian, YU Chenxin, LIANG Ning, et al.Trading model of wind-hydrogen-fire coupled energy system considering carbon emission financial market[J]. Electric Power Automation Equipment, 2023, 43(5): 138-144.
[32] 崔杨, 曾鹏, 惠鑫欣, 等. 考虑碳捕集电厂综合灵活运行方式的低碳经济调度[J]. 电网技术, 2021, 45(5): 1877-1886.
CUI Yang, ZENG Peng, HUI Xinxin, et al.Low-carbon economic dispatch considering the integrated flexible operation mode of carbon capture power plant[J]. Power System Technology, 2021, 45(5): 1877-1886.
[33] 申洪, 周勤勇, 刘耀, 等. 碳中和背景下全球能源互联网构建的关键技术及展望[J]. 发电技术, 2021, 42(1): 8-19.
SHEN Hong, ZHOU Qinyong, LIU Yao, et al.Key technologies and prospects for the construction of global energy Internet under the background of carbon neutral[J]. Power Generation Technology, 2021, 42(1): 8-19.
[34] 刘念, 赵璟, 王杰, 等. 基于合作博弈论的光伏微电网群交易模型[J]. 电工技术学报, 2018, 33(8): 1903-1910.
LIU Nian, ZHAO Jing, WANG Jie, et al.A trading model of PV microgrid cluster based on cooperative game theory[J]. Transactions of China Electrotechnical Society, 2018, 33(8): 1903-1910.
[35] 彭大健, 裴玮, 肖浩, 等. 数据驱动的用户需求响应行为建模与应用[J]. 电网技术, 2021, 45(7): 2577-2586.
PENG Dajian, PEI Wei, XIAO Hao, et al.Data-driven consumer demand response behavior modelization and application[J]. Power System Technology, 2021, 45(7): 2577-2586.
[36] 陈启鑫, 吕睿可, 郭鸿业, 等. 面向需求响应的电力用户行为建模: 研究现状与应用[J]. 电力自动化设备, 2023, 43(10): 23-37.
CHEN Qixin, LÜ Ruike, GUO Hongye, et al.Electricity user behavior modeling for demand response: research status quo and applications[J]. Electric Power Automation Equipment, 2023, 43(10): 23-37.
[37] 胡静哲, 王旭, 蒋传文, 等. 计及综合能源服务商参与的电力系统低碳经济调度[J]. 电网技术, 2020, 44(2): 514-522.
HU Jingzhe, WANG Xu, JIANG Chuanwen, et al.Low-carbon economic dispatch of power system considering participation of integrated energy service providers[J]. Power System Technology, 2020, 44(2): 514-522.
[38] 刘敦楠, 曾鸣, 黄仁乐, 等. 能源互联网的商业模式与市场机制(二)[J]. 电网技术, 2015, 39(11): 3057-3063.
LIU Dunnan, ZENG Ming, HUANG Renle, et al.Business models and market mechanisms of E-net(2)[J]. Power System Technology, 2015, 39(11): 3057-3063.
[39] 吴鸿亮, 程耀华, 张宁, 等. 跨省区碳交易机制下发电碳排放配额分配方法[J]. 电网技术, 2016, 40(11): 3440-3445.
WU Hongliang, CHENG Yaohua, ZHANG Ning, et al.A study on power carbon emission quota allocation in interprovincial carbon trading mechanism[J]. Power System Technology, 2016, 40(11): 3440-3445.
[40] 胡静哲, 王旭, 蒋传文, 等. 考虑区域碳排放均衡性的电力系统最优阶梯碳价[J]. 电力系统自动化, 2020, 44(6): 98-105.
HU Jingzhe, WANG Xu, JIANG Chuanwen, et al.Optimal tiered carbon price of power system considering equilibrium of regional carbon emission[J]. Automation of Electric Power Systems, 2020, 44(6): 98-105.
[41] 李奇, 霍莎莎, 蒲雨辰, 等. 面向含氢综合能源系统的电-碳-氢耦合交易市场研究综述[J]. 电力自动化设备, 2023, 43(12): 175-187.
LI Qi, HUO Shasha, PU Yuchen, et al.Review on electricity-carbon-hydrogen coupling trading market for integrated energy system with hydrogen[J]. Electric Power Automation Equipment, 2023, 43(12): 175-187.
[42] DENG Z H, JIANG Y W.Optimal sizing of wind-hydrogen system considering hydrogen demand and trading modes[J]. International Journal of Hydrogen Energy, 2020, 45(20): 11527-11537.
[43] USMAN M R.Hydrogen storage methods: Review and current status[J]. Renewable and Sustainable Energy Reviews, 2022, 167: 112743.
[44] 安麒. 电氢联合市场定价机制与分解协调方法研究[D]. 北京: 华北电力大学, 2022.
AN Qi.Pricing mechanism and decentralized coordination method for integrated electricity-hydrogen market[D]. Beijing: North China Electric Power University, 2022.
[45] TSIKLIOS C, HERMESMANN M, MÜLLER T E. Hydrogen transport in large-scale transmission pipeline networks: thermodynamic and environmental assessment of repurposed and new pipeline configurations[J]. Applied Energy, 2022, 327: 120097.
[46] LANG C G, JIA Y, YAO X D.Recent advances in liquid-phase chemical hydrogen storage[J]. Energy Storage Materials, 2020, 26: 290-312.
[47] ZHANG T T, URATANI J, HUANG Y X, et al.Hydrogen liquefaction and storage: Recent progress and perspectives[J]. Renewable and Sustainable Energy Reviews, 2023, 176: 113204.
[48] 刘应都, 郭红霞, 欧阳晓平. 氢燃料电池技术发展现状及未来展望[J]. 中国工程科学, 2021, 23(4): 162-171.
LIU Yingdu, GUO Hongxia, OUYANG Xiaoping.Development status and future prospects of hydrogen fuel cell technology[J]. Strategic Study of CAE, 2021, 23(4): 162-171.
[49] 刘世成, 张东霞, 朱朝阳, 等. 能源互联网中大数据技术思考[J]. 电力系统自动化, 2016, 40(8): 14-21, 56.
LIU Shicheng, ZHANG Dongxia, ZHU Chaoyang, et al.A view on big data in energy Internet[J]. Automation of Electric Power Systems, 2016, 40(8): 14-21, 56.
[50] 刘永辉, 张显, 孙鸿雁, 等. 能源互联网背景下电力市场大数据应用探讨[J]. 电力系统自动化, 2021, 45(11): 1-10.
LIU Yonghui, ZHANG Xian, SUN Hongyan, et al.Discussion on application of big data in electricity market in background of energy Internet[J]. Automation of Electric Power Systems, 2021, 45(11): 1-10.
[51] 张显, 史连军. 中国电力市场未来研究方向及关键技术[J]. 电力系统自动化, 2020, 44(16): 1-11.
ZHANG Xian, SHI Lianjun.Future research areas and key technologies of electricity market in China[J]. Automation of Electric Power Systems, 2020, 44(16): 1-11.
[52] 刘永辉, 张显, 谢开, 等. 能源互联网背景下的新一代电力交易平台设计探讨[J]. 电力系统自动化, 2021, 45(7): 104-115.
LIU Yonghui, ZHANG Xian, XIE Kai, et al.Discussion on design of new-generation electricity trading platform in background of energy internet[J]. Automation of Electric Power Systems, 2021, 45(7): 104-115.
[53] 周益民, 杨博, 胡袁炜骥, 等. 考虑绿证-碳交易的多能互补综合能源系统电-热-气协同低碳优化调度[J/OL]. 电网技术, 2024: 1-22. (2024-06-14). https://kns.cnki.net/KCMS/detail/detail.aspx?filename=DWJS20240611001&dbname=CJFD&dbcode=CJFQ.
ZHOU Yimin, YANG Bo, HU Yuanweiji, et al. Low-carbon optimal dispatching of multi-energy complementary comprehensive energy system considering green card-carbon trading[J/OL]. Power System Technology, 2024: 1-22. (2024-06-14). https://kns.cnki.net/KCMS/detail/detail.aspx?filename=DWJS20240611001&dbname=CJFD&dbcode=CJFQ.
[54] ZHU X X, XUE J F, HU M, et al.Low-carbon economy dispatching of integrated energy system with P2G-HGT coupling wind power absorption based on stepped Carbon emission trading[J]. Energy Reports, 2023, 10: 1753-1764.
[55] MA Y M, WANG H X, HONG F, et al.Modeling and optimization of combined heat and power with power-to-gas and carbon capture system in integrated energy system[J]. Energy, 2021, 236: 121392.
[56] 谈金晶, 李扬. 多能源协同的交易模式研究综述[J]. 中国电机工程学报, 2019, 39(22): 6483-6497.
TAN Jinjing, LI Yang.Review on transaction mode in multi-energy collaborative market[J]. Proceedings of the CSEE, 2019, 39(22): 6483-6497.
[57] 于丽芳, 李燕雪, 朱明晞, 等. 电-氢-碳综合能源系统协同经济调度[J]. 电力需求侧管理, 2022, 24(6): 63-69.
YU Lifang, LI Yanxue, ZHU Mingxi, et al.Coordinated economic dispatch of electricity-hydrogen-carbon integrated energy system[J]. Power Demand Side Management, 2022, 24(6): 63-69.
[58] 韩洁平, 刘宇途, 曲洋. 中国电力市场建设研究[J]. 科技经济市场, 2023(1): 51-53.
HAN Jieping, LIU Yutu, QU Yang.Research on the construction of China power market[J]. Science & Technology Ecnony Market, 2023(1): 51-53.
[59] ZHOU K L, LI Y W.Carbon finance and carbon market in China: progress and challenges[J]. Journal of Cleaner Production, 2019, 214: 536-549.
[60] 杨玉强, 徐程炜, 邓晖. 碳市场与电力市场协同运行关键问题研究[J]. 浙江电力, 2023, 42(5): 66-75.
YANG Yuqiang, XU Chengwei, DENG Hui.A study of key issues in the coordinated operation between carbon market and electricity market[J]. Zhejiang Electric Power, 2023, 42(5): 66-75.
[61] 张建平, 王晓东, 李琦, 等. 新形势下中国氢能市场现状与展望[J]. 天然气技术与经济, 2023, 17(1): 11-18.
ZHANG Jianping, WANG Xiaodong, LI Qi, et al.China's hydrogen energy market under new situations: status and outlook[J]. Natural Gas Technology and Economy, 2023, 17(1): 11-18.
[62] 董福贵, 时磊. 可再生能源配额制及绿色证书交易机制设计及仿真[J]. 电力系统自动化, 2019, 43(12): 113-121.
DONG Fugui, SHI Lei.Design and simulation of renewable portfolio standard and tradable green certificate mechanism[J]. Automation of Electric Power Systems, 2019, 43(12): 113-121.
[63] 崔杨, 沈卓, 王铮, 等. 考虑绿证-碳排等价交互机制的区域综合能源系统绿色调度[J]. 中国电机工程学报, 2023, 43(12): 4508-4517.
CUI Yang, SHEN Zhuo, WANG Zheng, et al.Green dispatch of regional integrated energy system considering green certificate-carbon emission equivalent interaction mechanism[J]. Proceedings of the CSEE, 2023, 43(12): 4508-4517.
[64] 冯昌森, 谢方锐, 文福拴, 等. 基于智能合约的绿证和碳联合交易市场的设计与实现[J]. 电力系统自动化, 2021, 45(23): 1-11.
FENG Changsen, XIE Fangrui, WEN Fushuan, et al.Design and implementation of joint trading market for green power certificate and carbon based on smart contract[J]. Automation of Electric Power Systems, 2021, 45(23): 1-11.
[65] WANG B K, LI C H, BAN Y S, et al.A two-tier bidding model considering a multi-stage offer-carbon joint incentive clearing mechanism for coupled electricity and carbon markets[J]. Applied Energy, 2024, 368: 123497.
[66] 王韵楚, 张智, 卢峰, 等. 考虑用户行为不确定性的阶梯式需求响应激励机制[J]. 电力系统自动化, 2022, 46(20): 64-73.
WANG Yunchu, ZHANG Zhi, LU Feng, et al.Stepwise incentive mechanism of demand response considering uncertainty of user behaviors[J]. Automation of Electric Power Systems, 2022, 46(20): 64-73.
[67] LIU Z, ZHANG X L, LIEU J.Design of the incentive mechanism in electricity auction market based on the signaling game theory[J]. Energy, 2010, 35(4): 1813-1819.

基金

国家自然科学基金联合项目(U22B20108)

PDF(873 KB)

Accesses

Citation

Detail

段落导航
相关文章
AI小编
你好!我是《电力建设》AI小编,有什么可以帮您的吗?

/