基于改进锁频环的并网变流器惯性增强控制方法

李星, 翟保豫, 梁树超, 唐伟瀚, 陈章勇, 陈勇

电力建设 ›› 0

PDF(1219 KB)
PDF(1219 KB)
电力建设 ›› 0

基于改进锁频环的并网变流器惯性增强控制方法

  • 李星1,2, 翟保豫2, 梁树超2, 唐伟瀚1, 陈章勇1, 陈勇1
作者信息 +

Inertia Enhancement Control Strategy of Grid Connected Converter Based on Frequency Lock Loop

  • LI Xing1,2, ZHAI Baoyu2, LIANG Shuchao2, TANG Weihan1, CHEN Zhangyong1, CHEN Yong1
Author information +
文章历史 +

摘要

【目的】由于电力电子变流器的并网特性,电力系统在新能源发电占比不断提高的背景下,整体惯性显著降低。为了增强电力系统的频率稳定性和抗扰动能力,要求并网变流器主动提供惯性支撑。【方法】在功率分配控制策略基础上,深入分析了基于常规锁相环(phase locked loop, PLL)控制结构的零极点分布及其在并网控制中的稳定性下降问题,提出了一种适用于并网变流器的基于改进锁频环(frequency locked loop, FLL)控制结构的惯性增强控制结构,将频率导数信号与参考有功功率成比例结合,以解决功率振荡问题。并且,一种改进的模型预测控制被用于代替传统电流内环,以改善动态性能。【结果】通过频率阶跃响应的对比,展示了在弱电网条件下基于改进锁频环控制结构在并网变流器频率稳定性方面的优势。给出了基于改进锁频环架构的有功环控制策略,阐述了其惯量增强的原理,并对惯性参数进行了调优设计。【结论】该方法避免了因微分操作引入的高频噪声和锁相环导致的不稳定问题,显著改善了系统的频率响应特性,实现了系统惯性增强的控制目标。最后,通过硬件在环(hardware in loop, HIL)实验验证了所提策略的有效性。

Abstract

[Objective] With the increasing penetration of renewable energy sources, the overall inertia of power systems has significantly declined due to the gradual replacement of traditional rotating machines by power electronic converters. This reduction in inertia poses serious challenges to frequency stability and system disturbance rejection. To address this issue, grid-connected converters are required to actively provide synthetic inertia support. [Methods] Based on a power-sharing control strategy, this paper analyzes the pole-zero distribution characteristics of conventional Phase-Locked Loop (PLL)-based control structures and highlights the associated stability degradation under weak grid conditions. To overcome these limitations, an inertia enhancement control scheme based on an improved Frequency-Locked Loop (FLL) structure is proposed. By proportionally integrating the frequency derivative signal with the reference active power, the proposed method effectively mitigates power oscillations and enhances the inertial response of the converter. Furthermore, a modified Model Predictive Control (MPC) strategy is employed to replace the conventional inner current loop, significantly improving the system's transient performance. [Results] Comparative studies of frequency step responses demonstrate the superiority of the proposed FLL-based structure in maintaining frequency stability under weak grid conditions. The active power control strategy under the improved FLL framework is detailed, along with the principle of inertia emulation and the tuning of associated parameters. [Conclusions] The proposed method avoids high-frequency noise issues caused by direct differentiation of frequency signals and eliminates the stability problems typically introduced by PLL. As a result, the frequency response of the system is substantially improved, and the goal of synthetic inertia enhancement is achieved. The effectiveness of the proposed control strategy is further validated through Hardware-in-the-Loop (HIL) simulation experiments.

关键词

并网变流器 / 功率振荡 / 锁频环(FLL) / 惯性增强技术

Key words

grid connected inverters / power oscillation / frequency locked loop (FLL) / inertial enhancement technology

引用本文

导出引用
李星, 翟保豫, 梁树超, 唐伟瀚, 陈章勇, 陈勇. 基于改进锁频环的并网变流器惯性增强控制方法[J]. 电力建设. 0
LI Xing, ZHAI Baoyu, LIANG Shuchao, TANG Weihan, CHEN Zhangyong, CHEN Yong. Inertia Enhancement Control Strategy of Grid Connected Converter Based on Frequency Lock Loop[J]. Electric Power Construction. 0

参考文献

[1] 滕贤亮, 谈超, 昌力, 等. 高比例新能源电力系统有功功率与频率控制研究综述及展望[J]. 电力系统自动化, 2023, 47(15): 12-35.
TENG Xianliang, TAN Chao, CHANG Li, et al.Review and prospect of research on active power and frequency control in power system with high proportion of renewable energy[J]. Automation of Electric Power Systems, 2023, 47(15): 12-35.
[2] 刘威, 于飞, 董霜, 等. 基于多电平变流器模块的直流输电系统控制[J]. 电网与清洁能源, 2024, 40(9): 47-53.
LIU Wei, YU Fei, DONG Shuang, et al.The DC transmission system control based on the multilevel converter module[J]. Power System and Clean Energy, 2024, 40(9): 47-53.
[3] 杜文娟, 郝向坤, 陈珏. 光伏场经柔直并网振荡稳定性分析与抑制方法研究[J]. 电力工程技术, 2024, 43(3): 2-11, 51.
DU Wenjuan, HAO Xiangkun, CHEN Jue.Oscillation stability analysis and mitigation method of photovoltaic field connected to the grid via VSC-HVDC[J]. Electric Power Engineering Technology, 2024, 43(3): 2-11, 51.
[4] 尚磊, 唐王倩云, 苏适, 等. 构网型无功补偿抑制新能源送端暂态过电压[J]. 电力工程技术, 2024, 43(2): 83-93.
SHANG Lei, TANG Wangqianyun, SU Shi, et al.Suppression of transient overvoltage in renewable energy transmission terminal by grid-forming based reactive power compensation[J]. Electric Power Engineering Technology, 2024, 43(2): 83-93.
[5] 万千, 夏成军, 管霖, 等. 含高渗透率分布式电源的独立微网的稳定性研究综述[J]. 电网技术, 2019, 43(2): 598-612.
WAN Qian, XIA Chengjun, GUAN Lin, et al.Review on stability of isolated microgrid with highly penetrated distributed generations[J]. Power System Technology, 2019, 43(2): 598-612.
[6] 李丹丹, 张爱军, 袁辉, 等. 弱电网下负序控制对变流器并网系统稳定性影响分析[J]. 电力建设, 2021, 42(3): 61-71.
LI Dandan, ZHANG Aijun, YUAN Hui, et al.The impact of negative-sequence control on the stability of grid-connected converter in weak grids[J]. Electric Power Construction, 2021, 42(3): 61-71.
[7] 杨捷, 孙哲, 苏辛一, 等. 考虑振荡型功率的直流微电网储能系统无互联通信网络的多目标功率分配方法[J]. 发电技术, 2024, 45(2): 341-352.
YANG Jie, SUN Zhe, SU Xinyi, et al.A wireless multi-objective power sharing method for energy storage system in DC micro-grid considering oscillatory-type power[J]. Power Generation Technology, 2024, 45(2): 341-352.
[8] 贾俊, 范炜豪, 吕志鹏, 等. 用于电动汽车集群并网的直流变压器启动研究[J]. 发电技术, 2023, 44(6): 875-882.
JIA Jun, FAN Weihao, LÜ Zhipeng, et al.Research on startup of DC transformer for electric vehicle cluster grid-connection[J]. Power Generation Technology, 2023, 44(6): 875-882.
[9] 李盟盟, 王育飞, 薛花, 等. 不平衡电网下无锁相环逆变器模型预测控制[J]. 电力建设, 2018, 39(4): 100-105.
LI Mengmeng, WANG Yufei, XUE Hua, et al.Model predictive control of inverters without phase-lock loop under unbalanced grid[J]. Electric Power Construction, 2018, 39(4): 100-105.
[10] LIANG S, CHEN W D, QIN L W, et al.Adaptive damping factor control strategy of inverter interfaced distributed generators based on virtual synchronous generator technology[C]//2018 International Conference on Power System Technology (POWERCON). IEEE, 2018: 4202-4207.
[11] 龚凯, 肖晃庆, 张展, 等. 新能源并网换流器的自适应混合同步控制及其小信号稳定性分析[J]. 浙江电力, 2024, 43(11): 3-14.
GONG Kai, XIAO Huangqing, ZHANG Zhan, et al.Adaptive hybrid synchronization control of grid-connected converters in renewable power plants and its small-signal stability analysis[J]. Zhejiang Electric Power, 2024, 43(11): 3-14.
[12] LU N J, FANG J Y, TANG Y, et al.A frequency deadband-based virtual inertia control for grid-connected power converters[C]//2019 10th International Conference on Power Electronics and ECCE Asia (ICPE 2019 - ECCE Asia). IEEE, 2019: 1-6.
[13] 陈文翰, 顾益磊, 扶达鸿. VSC连接弱交流电网的小扰动特性[J]. 电力建设, 2015, 36(2): 74-79.
CHEN Wenhan, GU Yilei, FU Dahong.Small disturbance characteristics analysis of VSC connecting to weak AC system[J]. Electric Power Construction, 2015, 36(2): 74-79.
[14] FANG J Y, TANG Y, LI H C, et al.The role of power electronics in future low inertia power systems[C]//2018 IEEE International Power Electronics and Application Conference and Exposition (PEAC). IEEE, 2018: 1-6.
[15] 李东东, 陈昊, 姚寅, 等. 考虑非均匀通信延迟的多VSG功率振荡抑制[J]. 电力建设, 2024, 45(9): 63-73.
LI Dongdong, CHEN Hao, YAO Yin, et al.Power oscillation suppression of multi-VSG considering non-uniform communication delays[J]. Electric Power Construction, 2024, 45(9): 63-73.
[16] ZHANG R Q, FANG J Y, TANG Y.Inertia emulation through supercapacitor energy storage systems[C]//2019 10th International Conference on Power Electronics and ECCE Asia (ICPE 2019 - ECCE Asia). IEEE, 2019: 1365-1370.
[17] ZHONG Q C, NGUYEN P L, MA Z Y, et al.Self-synchronized synchronverters: inverters without a dedicated synchronization unit[J]. IEEE Transactions on Power Electronics, 2014, 29(2): 617-630.
[18] 杨成顺, 王鹏, 许德智, 等. 基于改进虚拟惯性控制的直流充电桩控制方法[J]. 电力工程技术, 2024, 43(5): 150-159.
YANG Chengshun, WANG Peng, XU Dezhi, et al.DC charging pile control method based on improved virtual inertia control[J]. Electric Power Engineering Technology, 2024, 43(5): 150-159.
[19] ZHANG Q, LI Y, DING Z W, et al.Self-adaptive secondary frequency regulation strategy of micro-grid with multiple virtual synchronous generators[J]. IEEE Transactions on Industry Applications, 2020, 56(5): 6007-6018.
[20] 但扬清, 黄莹, 韩连山, 等. 计及功率控制型构网变流器接入的交流系统暂态稳定性仿真研究[J]. 浙江电力, 2024, 43(6): 1-12.
DAN Yangqing, HUANG Ying, HAN Lianshan, et al.Simulation study on transient stability of AC systems considering the connected power-controlled grid-forming converters[J]. Zhejiang Electric Power, 2024, 43(6): 1-12.
[21] CHEN M, ZHOU D, BLAABJERG F.Active power oscillation damping based on acceleration control in paralleled virtual synchronous generators system[J]. IEEE Transactions on Power Electronics, 2021, 36(8): 9501-9510.
[22] 赵书强, 高瑞鑫, 邵冰冰, 等. 多光伏发电单元并入弱交流电网系统的站内/站网次同步振荡特性分析[J]. 电力建设, 2021, 42(12): 49-58.
ZHAO Shuqiang, GAO Ruixin, SHAO Bingbing, et al.Inside-plant and plant-grid sub-synchronous oscillation characteristics analysis of multiple PV generation units connected to a weak AC power grid[J]. Electric Power Construction, 2021, 42(12): 49-58.
[23] 王雪, 刘林, 卓庆东, 等. 基于虚拟惯量控制的新型电力系统功率差前馈振荡抑制方法[J]. 中国电力, 2024, 57(4): 68-76.
WANG Xue, LIU Lin, ZHUO Qingdong, et al.Power difference feed-forward oscillation suppression method for new power system based on virtual inertial control[J]. Electric Power, 2024, 57(4): 68-76.
[24] DONG S, CHEN Y C.Adjusting synchronverter dynamic response speed via damping correction loop[J]. IEEE Transactions on Energy Conversion, 2017, 32(2): 608-619.
[25] WU H, RUAN X B, YANG D S, et al.Small-signal modeling and parameters design for virtual synchronous generators[J]. IEEE Transactions on Industrial Electronics, 2016, 63(7): 4292-4303.
[26] DHARMAWARDENA H, UHLEN K, GJERDE S S.Modelling wind farm with synthetic inertia for power system dynamic studies[C]//2016 IEEE International Energy Conference (ENERGYCON). IEEE, 2016: 1-6.
[27] DREIDY M, MOKHLIS H, MEKHILEF S.Inertia response and frequency control techniques for renewable energy sources: a review[J]. Renewable and Sustainable Energy Reviews, 2017, 69: 144-155.
[28] ALIPOOR J, MIURA Y, ISE T.Power system stabilization using virtual synchronous generator with alternating moment of inertia[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2015, 3(2): 451-458.
[29] 张亚耀, 占萌. 锁相环型变换器并网系统暂态主导失稳特征分析[J]. 中国电机工程学报, 2023, 43(23): 9285-9297.
ZHANG Yayao, ZHAN Meng.Dominant transient unstable characteristics of PLL-based grid-connected converters[J]. Proceedings of the CSEE, 2023, 43(23): 9285-9297.
[30] DUCKWITZ D, FISCHER B.Modeling and design of df/dt-based inertia control for power converters[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2017, 5(4): 1553-1564.
[31] 孙佳航, 王小华, 黄景光, 等. 基于MPC-VSG的孤岛微电网频率和电压动态稳定控制策略[J]. 中国电力, 2023, 56(6): 51-60, 81.
SUN Jiahang, WANG Xiaohua, HUANG Jingguang, et al.MPC-VSG based control strategy for dynamic stability of frequency and voltage in islanded microgrid[J]. Electric Power, 2023, 56(6): 51-60, 81.
[32] TANG W H, CHEN Z Y, CHEN Y, et al.Multi-voltage-vector-based modulated model predictive controller for three-level NPC inverters with neutral-point voltage balancing[J]. Journal of Power Electronics, 2024, 24(6): 934-945.

基金

国家重点研发计划项目(2022YFE0120700); 四川省科技计划项目(2024NSFSC0114)

PDF(1219 KB)

Accesses

Citation

Detail

段落导航
相关文章
AI小编
你好!我是《电力建设》AI小编,有什么可以帮您的吗?

/