需求侧多主体基于纳什谈判的电能-灵活性资源日前交易机制

师文杰, 李华强, 陈毅鹏, 王子峣, 高璐瑶, 臧天磊

电力建设 ›› 2025

PDF(1140 KB)
PDF(1140 KB)
电力建设 ›› 2025

需求侧多主体基于纳什谈判的电能-灵活性资源日前交易机制

  • 师文杰1, 李华强1, 陈毅鹏2, 王子峣1, 高璐瑶3, 臧天磊1
作者信息 +

Day-ahead Trading Mechanism of Multi-Subject Electricity-Flexible Resources on Demand-Side Based on Nash Negotiation

  • SHI Wenjie1, LI Huaqiang1, CHEN Yipeng2, WANG Ziyao1, GAO Luyao3, ZANG Tianlei1
Author information +
文章历史 +

摘要

【目的】随着需求侧分布式风电的大规模接入,系统对多元化发展需求侧灵活性资源的需求程度日益提升。然而,这类资源往往容量较小且分布分散,依靠现有的市场机制难以对其进行有效利用。因此,文中针对需求侧各类典型资源,提出一种基于纳什谈判的电能-灵活性资源联合市场日前交易机制。【方法】首先,各市场主体在电能交易部分依据纳什谈判模型确定电能交易初始计划,再结合灵活性资源供需平衡情况,判断是否需开展灵活性资源交易。随后,在灵活性资源交易阶段,提出灵活性资源的报量、报价原则,并基于纳什谈判模型确定灵活性资源交易计划。最后,根据电能与灵活性资源间的容量耦合关系,修正电能交易计划,形成最终联合交易计划。【结果】在需求侧多类型资源参与的市场中,算例结果表明该机制能够有效提高并协调多方主体效益,合理分配在加入灵活性资源交易后的市场收益,且对灵活性资源定价相较于传统方法更加合理。【结论】本文提出的基于纳什谈判的电能-灵活性资源联合市场日前交易机制,能够有效解决分布式风电接入带来的灵活性资源需求问题以及需求侧资源分散、容量小带来的交易困难问题,提升需求侧资源参与市场的积极性,也为灵活性资源的市场化发展方向提供了理论支撑。

Abstract

[Objective] With the large-scale integration of distributed wind power on the demand side, power systems are placing increasing demands on diversified and flexible demand-side resources. However, these resources are typically small in capacity and geographically dispersed, making it difficult to effectively utilize them through existing market mechanisms. To address this issue, this paper proposes a day-ahead combined electricity-flexible resources market trading mechanism based on the Nash negotiation model for typical demand-side resources. [Methods] First, in the electricity trading stage, each market participant determines its initial electricity trading plan using the Nash negotiation model. Then, based on the supply-demand balance of flexible resources, it is assessed whether flexibility trading is necessary. In the flexibility trading stage, bidding quantity and pricing principles for flexibility resources are proposed, and the corresponding trading plans are derived using the Nash negotiation model. Finally, considering the capacity coupling relationship between electricity and flexible resources, the electricity trading plans are updated to form the final combined market trading schedule. [Results] In a market involving multiple types of demand-side resources, case study results demonstrate that the proposed mechanism can effectively enhance and coordinate the benefits of multiple market participants. It achieves a reasonable allocation of market benefits after flexible resources are introduced and provides a more rational pricing mechanism for flexible resources compared to conventional methods. [Conclusions] The proposed day-ahead combined electricity-flexible resources market trading mechanism based on Nash negotiation effectively addresses the increased flexibility demands caused by the integration of distributed wind power, as well as the trading challenges posed by the small capacity and scattered distribution of demand-side flexible resources. It also improves the enthusiasm of demand-side resources to participate in the market and offers theoretical support for the market-oriented development of flexible resources.

关键词

灵活性资源 / 需求侧市场交易 / 纳什谈判 / 联合市场

Key words

flexible resources / demand-side market / Nash negotiation / combined market

引用本文

导出引用
师文杰, 李华强, 陈毅鹏, 王子峣, 高璐瑶, 臧天磊. 需求侧多主体基于纳什谈判的电能-灵活性资源日前交易机制[J]. 电力建设. 2025
SHI Wenjie, LI Huaqiang, CHEN Yipeng, WANG Ziyao, GAO Luyao, ZANG Tianlei. Day-ahead Trading Mechanism of Multi-Subject Electricity-Flexible Resources on Demand-Side Based on Nash Negotiation[J]. Electric Power Construction. 2025

参考文献

[1] 马文祚, 夏周武. 考虑新能源不确定性的电网运营商多时间尺度鲁棒交易[J]. 山东电力技术, 2024, 51(08): 49-58.
MA Wenzuo, XIA Zhuowu.Multi-time scale robust trading of power grid operators considering new energy uncertainty[J]. Shandong Electric Power, 2024, 51(08): 49-58.
[2] 李建林, 梁策, 张则栋, 等. 新型电力系统下储能政策及商业模式分析[J]. 高压电器, 2023, 59(07): 104-116.
LI Jianlin, LIANG Ce, ZHANG Zedong, et al.Analysis of energy storage policies and business models in new power system[J]. High Voltage Apparatus, 2023, 59(07): 104-116.
[3] 赵倩宇, 王璐洋, 王守相. 新型配电系统灵活性及其评价指标综述[J]. 供用电, 2024, 41(08): 35-44.
ZHAO Qianyu, WANG Luyang, WANG Shouxiang.Review on flexibility of new distribution systems and its evaluation indexes[J]. Distribution&Utilization, 2024, 41(08): 35-44.
[4] 高洪超, 陈启鑫, 金泰, 等. 考虑虚拟电厂灵活调节特性的现货市场出清模型及灵活性溢价评估方法[J]. 电网技术, 2023, 47(01): 194-207.
GAO Hongchao, CHEN Qixin, JIN Tai, et al, Spot market clearing model and flexible premium evaluation method considering flexible regulation of virtual power plant[J]. Power System Technology, 2023, 47(01): 194-207.
[5] 吴任博, 刘淑琴. 考虑市场交易的新型电力系统调度辅助决策方法研究[J]. 电测与仪表, 2023, 60(11): 81-89.
WU Renbo, LIU Shuqin.Research on dispatching assistant decision-making method for novel power system considering market transaction[J]. Electrical Measurement&Instrumentation, 2023, 60(11): 81-89.
[6] WANG Qin, HODGE B M.Enhancing power system operational flexibility with flexible ramping products: a review[J]. IEEE Transactions on Industrial Informatics, 2017, 13(4): 1652-1664.
[7] WANG Jianxiao, ZHONG Haiwang, TANG wenyuan, et al. Optimal bidding strategy for energy storage systems in energy and flexible ramping products markets[J]. Applied Energy, 2017, 11(205): 294-303.
[8] 武昭原, 周明, 王剑晓, 等. 双碳目标下提升电力系统灵活性的市场机制综述[J]. 中国电机工程学报, 2022, 42(21): 7746-7764.
WU Zhaoyuan, ZHOU Ming, WANG Jianxiao, et al.Review on market mechanism to enhance the flexibility of power system under the dual-carbon target[J]. Proceedings of the CSEE, 2022, 42(21): 7746-7764.
[9] 李宏仲, 魏静怡, 吕勇荡. 考虑储能与新能源双边交易的日前市场报价策略[J]. 电网技术, 2022, 46(12): 4843-4853.
LI Hongzhong, WEI Jingyi, LV Yongdang.Day-ahead market quotation strategy considering bilateral transaction between energy[J]. Power System Technology, 2022, 46(12): 4843-4853.
[10] 胡晓静, 李慧, 崔晖, 等. 考虑灵活爬坡辅助服务和弃风惩罚的现货电能量市场出清模型[J]. 电力系统保护与控制, 2024, 52(04): 133-143.
HU Xiaojing, LI Hui, CUI Hui, et al.Cleaning model of a spot electric energy market considering flexible ramping auxiliary services and wind curtailment penalty[J]. Power System Protection and Control, 2024, 52(04): 133-143.
[11] 王玲玲, 刘恋, 张锞, 等. 电力系统灵活调节服务与市场机制研究综述[J]. 电网技术, 2022, 46(02): 442-452.
WANG Lingling, LIU Lian, ZHANG Ke, et al.A review of power system flexible ramping product and market mechanism[J]. Power System Technology, 2022, 46(02): 442-452.
[12] BEI Zhang, KEZUNOVIC M.Impact on power system flexibility by electric vehicle participation in ramp market[J]. IEEE Transactions on Smart Grid, 2016, 7(3): 1285-1294.
[13] 仪忠凯, 许银亮, 吴文传. 考虑虚拟电厂多类电力产品的配电侧市场出清策略[J]. 电力系统自动化, 2020, 44(22): 143-151.
YI Zhongkai, XU Yinliang, WU Wenchuan.Market clearing strategy for distribution system considering multiple power commodities offered by virtual power plant[J]. Automation of Electric Power Systems, 2020, 44(22): 143-151.
[14] 钟佳宇, 陈皓勇, 陈武涛, 等. 含灵活性资源交易的电力市场实时出清[J]. 电网技术, 2021, 45(03): 1032-1041.
ZHONG Jiayu, CHEN Haoyong, CHEN Wutao, et al.Real-time clearing of electricity markets with flexible resource transactions[J]. Power System Technology, 2021, 45(03): 1032-1041.
[15] FABIO M, PINSON P.Energy collectives: a community and fairness based approach to future electricity markets[J]. IEEE Transactions on Power Systems, 2019, 34(5): 3994-4004.
[16] 杨昆, 刘通, 柏林, 等. 基于谈判博弈的微电网群多主体共享储能容量优化配置策略[J]. 电测与仪表, 2024, 61(03): 33-41.
YANG Kun, LIU Tong, BO Lin, et al.Optimal configuration strategy of shared energy storage capacity for micro-grid cluster based on multi-party bargaining game[J]. Electrical Measurement&Instrumentation, 2024, 61(03): 33-41.
[17] 莫宇鸿. 基于不确定性定价的新能源电力系统运行灵活性评估与提升策略研究[D]. 广西: 广西大学, 2021.
MO Yuhong.Operational flexibility assessment and enhancement of power system with renewable energy base on uncertainty marginal pricing[D]. Guangxi: Guangxi University, 2021.
[18] 关颖聪, 刘明波, 雷振兴. 考虑与集中市场协同的本地点对点交易双层优化模型[J]. 电力自动化设备, 2023, 43(05): 54-60.
GUAN Yingcong, LIU Mingbo, LEI Zhenxing.Bi-level optimization model for local peer-to-peer trading considering coordination with centralized market[J]. Electric Power Automation Equipment, 2023, 43(05): 54-60.
[19] 李相俊, 马会萌, 李焓宁. 电力市场环境下新型储能规划与控制方法综述及展望[J]. 供用电, 2024, 41(08): 54-64.
LI Xiangjun, MA Huimeng, LI Hanning.Review and prospect of new energy storage planning and control methods in electricity market environment[J]. Distribution&Utilization, 2024, 41(08): 54-64.
[20] ZHAO Jinye, ZHENG Tongxin, EUGENE L.A multi-period market design for markets with intertemporal constraints[J]. IEEE Transactions on Power Systems, 2020, 35(4): 3015-3025.
[21] 许高秀, 邓晖, 房乐, 等. 考虑需求侧灵活性资源参与的国内外电力辅助服务市场机制研究综述[J]. 浙江电力, 2022, 41(09): 3-13.
XV Gaoxiu, DENG Hui, FANG Le, et al.A review of ancillary service market mechanism study at home and abroad considering flexible resources on demand side[J]. Zhejiang Electric Power, 2022, 41(09): 3-13.
[22] 胡嘉骅, 文福拴, 马莉, 等. 电力系统运行灵活性与灵活调节产品[J]. 电力建设, 2019, 40(04): 70-80.
Hu Jiahua, WEN Fushuan, MA Li, et al.Power system operation flexibility and flexible ramping products[J]. Electric Power Construction, 2019, 40(04): 70-80.
[23] 张雷, 刘琦, 赵晓丽, 等. 电力需求增长和负荷灵活性提升视角下的风光资源密集地区可再生能源消纳研究[J]. 全球能源互联网, 2024, 7(04): 454-462.
ZHANG Lei, LIU Qi, ZHAO Xiaoli, et al.Research on renewable energy penetration in wind and solar resource-intensive areas from the perspective of power demand growth and load flexibility enhancement[J]. Journal of Global Energy Interconnection, 2024, 7(04): 454-462.
[24] 吴静. 分布式资源聚合虚拟电厂多维交易优化模型研究[D]. 北京: 华北电力大学, 2022.
WU Jing.Research on multi-dimensional transaction optimization model of virtual power plant aggregated by distributed resources[D]. Beijing: North China Electric Power University, 2022.
[25] 邓靖微, 李华强, 温丰瑞, 等. 计及虚拟电厂市场交易的主动配电网两阶段优化调度[J]. 电力建设, 2021, 42(09): 22-31.
DENG Jingwei, LI Huaqiang, WEN Fengrui, et al.Two-stage optimal dispatching of active distribution network considering virtual power plant market transaction[J]. Electric Power Construction, 2021, 42(09): 22-31.
[26] 田新成, 文艺林, 卢泽汉, 等. 多类型灵活资源的建模与分层式协调控制架构[J]. 分布式能源, 2024, 9(01): 10-18.
TIAN Xincheng, WEN Yilin, LU Zehan, et al.Modeling techniques and a hierarchical coordinated control framework for various-type flexible resources[J]. Distributed Energy, 2024, 9(01): 10-18.
[27] 王桂兰, 卓怀宇, 卢建刚, 等. 计及信誉值的虚拟电厂多主体合作博弈交易方法[J]. 广东电力, 2024, 37(08): 26-34.
WANG Guilan, ZHUO Huaiyu, LU Jiangang, et al.Multi-agent cooperative game trading method for virtual power plants considering reputation value[J]. Guangdong Electric Power, 2024, 37(08): 26-34.
[28] 李静轩, 周明, 朱凌志, 等. 可再生能源电力系统运行灵活性需求量化及优化调度方法[J]. 电网技术, 2021, 45(07): 2647-2656.
LI Jingxuan, ZHOU Ming, ZHU Lingzhi, et al.Flexibility requirement quantifying and optimal dispatching for renewable integrated power systems[J]. Power System Technology, 2021, 45(07): 2647-2656.
[29] 闫宇露, 程瑜, 陈熙. 适应光伏高渗透接入的配电网拓扑及储荷资源协同规划[J]. 广东电力, 2024, 37(12): 50-60.
YAN Yulu, CHENG Yu, CHEN Xi.Distribution network topology and coordinated planning of storage and load resources adapted to photovoltaic high penetration access[J]. Guangdong Electric Power, 2024, 37(12): 50-60.
[30] 刘学, 刘硕, 于松泰, 等. 面向新型电力系统灵活性提升的调峰容量补偿机制设计[J]. 电网技术, 2023, 47(01): 155-163.
LIU Xue, LIU Shuo, YU Songtai, et al.Peak load regulation capacity compensation mechanism for new power system flexibility enhancement[J]. Power System Technology, 2023, 47(01): 155-163.

基金

国家自然科学基金资助项目(No. 52377115)

PDF(1140 KB)

Accesses

Citation

Detail

段落导航
相关文章
AI小编
你好!我是《电力建设》AI小编,有什么可以帮您的吗?

/