计及充电排队与实时SOC的电动汽车充电负荷时空分布预测

张琳娟, 李文峰, 许长清, 郭建宇, 张夏韦, 袁嘉, 王要强

电力建设 ›› 2025

PDF(1380 KB)
PDF(1380 KB)
电力建设 ›› 2025

计及充电排队与实时SOC的电动汽车充电负荷时空分布预测

  • 张琳娟1, 李文峰1, 许长清1, 郭建宇1, 张夏韦2,3, 袁嘉3,4, 王要强3,4
作者信息 +

Spatial-Temporal Distribution Prediction of Electric Vehicle Charging Load Based on Dynamic Travel Simulation

  • ZHANG Linjuan1, LI Wenfeng1, XU Changqing1, GUO Jianyu1, ZHANG Xiawei2,3, YUAN Jia3,4, WANG Yaoqiang3,4
Author information +
文章历史 +

摘要

【目的】针对电动汽车用户出行方式和充电需求的不确定性问题,提出一种计及充电排队与实时荷电状态(state of charge,SOC)的电动汽车充电负荷时空分布预测方法。【方法】首先,分析交通路况和环境温度对电动汽车能耗及充电行为的影响,建立道路交通路网模型和综合能耗模型;其次,基于用户出行链分析用户出行特征,采用最短时间法规划行驶路径,计及充电排队时间和实时SOC构建电动汽车充电负荷时空分布预测模型;最后,采用蒙特卡洛方法以实际路网结构及IEEE 33节点配电系统为例进行验证。【结果】结果表明,高峰时段充电排队时长超过30 min,促使部分用户转向低峰时段充电,与未考虑充电排队模型相比,高峰负荷减少,低峰负荷增加。此外,节假日充电负荷与工作日充电负荷存在明显时间差异,且随着电动汽车渗透率的升高,总体充电负荷不断增大。验证了电动汽车规模化接入对电网的显著影响。【结论】所提出的方法能够充分考虑路网、电动汽车及用户充电行为的相互影响,准确预测出电动汽车充电负荷时空分布特性。

Abstract

[Objective] Aiming at the uncertainty of electric vehicle users' travel mode and charging demand, a spatial-temporal distribution prediction method of electric vehicle charging load based on charging queue and real-time SOC is proposed. [Methods] The influence of traffic conditions and ambient temperature on EV energy consumption and charging behavior is analyzed, and the road traffic network model and comprehensive energy consumption model are established. Based on the user's travel chain, the user's travel characteristics are analyzed, the shortest time method is used to plan the driving path, and the spatial-temporal distribution prediction model of EV charging load is built taking into account the charging queue time and real-time SOC. Finally, Monte Carlo method is used to verify the actual network structure and IEEE33-node distribution system. [Results] The analysis demonstrates that peak-hour charging queue durations surpassing 30 minutes induce partial user migration to off-peak periods, resulting in peak load reduction and off-peak load elevation compared to queuing-free models. Compared with the model without considering the charging queue, the peak load decreases and the off-peak load increases. In addition, there is a significant time difference between the charging load during holidays and that on working days. Moreover, as the penetration rate of electric vehicles increases, the overall charging load keeps growing. The significant impact of the large-scale integration of electric vehicles on the power grid has been verified. [Conclusions] The results show that the proposed method can fully consider the interaction of road network, EV and user charging behavior, and accurately predict the spatial-temporal distribution characteristics of EV charging load.

关键词

电动汽车 / 充电负荷 / 负荷预测 / 时空分布 / 充电排队 / 实时荷电状态(SOC)

Key words

electric vehicles / charging load / load prediction / spatial-temporal distribution / travel chain

引用本文

导出引用
张琳娟, 李文峰, 许长清, 郭建宇, 张夏韦, 袁嘉, 王要强. 计及充电排队与实时SOC的电动汽车充电负荷时空分布预测[J]. 电力建设. 2025
ZHANG Linjuan, LI Wenfeng, XU Changqing, GUO Jianyu, ZHANG Xiawei, YUAN Jia, WANG Yaoqiang. Spatial-Temporal Distribution Prediction of Electric Vehicle Charging Load Based on Dynamic Travel Simulation[J]. Electric Power Construction. 2025
中图分类号: TM73   

参考文献

[1] JAHANGIR H, TAYARANI H, AHMADIAN A, et al.Charging demand of Plug-in Electric Vehicles: Forecasting travel behavior based on a novel Rough Artificial Neural Network approach[J]. Journal of Cleaner Production, 2019, 229(20): 1029-1044.
[2] 赵怡军. 我国新能源汽车技术发展的挑战与前景[J].时代汽车,2023(03):122-124.
ZHAO Yijun.The challenges and prospects of China's new energy vehicle technology development[J]. Auto Time,2023(03):122-124.
[3] AFSHAR M, MOHAMMADI M R, ABEDINI M.A novel spatial-temporal model for charging plug hybrid electrical vehicles based on traffic-flow analysis and Monte Carlo method[J]. ISA Transactions, 2020, 114(1).
[4] GONG L, CAO W, LIU K, et al.Demand responsive charging strategy of electric vehicles to mitigate the volatility of renewable energy sources[J]. Renewable Energy, 2020, 156: 665-676.
[5] 刘勇,李全优,戴朝华.电动汽车充电负荷时空分布建模研究综述[J].电测与仪表,2022,59(8):1-9.
Liu Yong,LI Quanyou,DAI Chaohua.Survey on the Spatio-temporal Distribution Modeling of Electric Vehicle Charging Loads[J].Electrical Measurement & Instrumentation,2022,59(8):1-9.
[6] Jia Z.X.,Li J. N.,Zhang X.P.,et al.Review on optimization of forecasting and coordination strategies for electric vehicle charging[J].Journal of Modern Power Systems and Clean Energy,2023,11(2):389-400.
[7] 曹杭涛,章勇,蒋宁,等. 一种电动汽车“预约充/放电”模式的优化配置方案[J]. 浙江电力, 2024, 43(05): 35-42. DOI:10.19585/j.zjdl.202405005.
CAO Hangtao,ZHANG Yong,JIANG Ning,LYU Bin.An optimal configuration scheme for “scheduled charging and discharging” mode of electric vehicles[J].ZHEJIANG ELECTRIC POWER,2024,v.43;No.337(05):35-42
[8] 周原冰,龚乃玮,王皓界,等. 中国电动汽车发展及车网互动对新型储能配置的影响[J]. 中国电力, 2024, 57(10): 1-11.
Yuanbing ZHOU, Naiwei GONG, Haojie WANG, Jinyu XIAO, Yun ZHANG.Study on the Influence of Electric Vehicle Development and the Vehicle-Grid Interaction on New Energy Storage Configuration in China[J]. Electric Power, 2024, 57(10): 1-11.
[9] 陈丽丹,张尧,Antonio FIGUEIREDO.电动汽车充放电负荷预测研究综述[J].电力系统自动化,2019,43(10):177-191.
CHEN Lidan, ZHANG Yao, ANTONIO FIG-UEIREDO.Overview of charging and discharging load forecasting for electric vehicles[J]. Automation of Electric Power Systems, 2019, 43(10): 177-191.
[10] 毛玲,张钟浩,赵晋斌,等.车-桩-网交融技术研究现状及展望[J].电工技术学报,2022,37(24):6357-6371.
MAO Ling, ZHANG Zhonghao, ZHAO Jinbin, et al.Research status and prospects of fusion technology of vehicle-charging pile-power grid[J]. Transactions of China Electrotechnical Society, 2022, 37(24): 6357-6371.
[11] 王海鑫,袁佳慧,陈哲,等.智慧城市车-站-网一体化运行关键技术研究综述及展望[J].电工技术学报,2022,37(01):112-132.
WANG Haixin, YUAN Jiahui, CHEN Zhe, et al.Review and prospect of key techniques for vehicle-station-network integrated operation in smart city[J]. Transactions of China Electrotechnical Society, 2022, 37(01): 112-132.
[12] 卞海红,李灿,童宇轩. 共享储能模式下电动汽车充电站双层优化运行策略[J]. 电力工程技术, 2024, 43(05): 170-180.
Bian Haihong, Li Can,Tong Yuxuan, "Double-layer Optimization Operation Strategy for Electric Vehicle Charging Stations under Shared Energy Storage Mode," Electric Power Engineering Technology, vol. 43, no. 5, pp. 170-180, 2024.
[13] 黄南天,刘德宝,蔡国伟,等.基于多相关日场景生成的电动汽车充电负荷区间预测[J].中国电机工程学报,2021,41(23):7980-7990.
HUANG Nantian, LIU Debao, CAI Guowei, et al.Interval prediction of electric vehicle charging load based on scene generation with multiple correlation days[J]. Proceedings of the CSEE, 2021, 41(23): 7980-7990.
[14] 牛牧童,廖凯,杨健维,等.考虑季节特性的多时间尺度电动汽车负荷预测模型[J].电力系统保护与控制. 2022,50(5):74-85.
NIU Mutong, LIAO Kai, YANG Jianwei, et al.Multi-time-scale electric vehicle load forecasting model considering seasonal characteristics[J]. Power System Protection and Control, 2022, 50(5): 74-85.
[15] 王浩林,张勇军,毛海鹏.基于时刻充电概率的电动汽车充电负荷预测方法[J].电力自动化设备,2019,39(03):207-213.
WANG Haolin, ZHANG Yongjun, MAO Haipeng.Charging load forecasting method based on instantaneous charging probability for electric vehicles[J]. Electric Power Automation Equipment, 2019, 39(03): 207-213.
[16] 宣羿,樊立波,孙智卿,等. 考虑低碳交通的电动汽车充电站优化配置方法[J]. 浙江电力, 2024, 43(06): 69-79. DOI:10.19585/j.zjdl.202406008.
XUAN Yi,FAN Libo,SUN Zhiqing,JIANG Jian,CHEN Duowen,DENG Kai,WANG Mengyao.An optimal allocation method for electric vehicle charging stations considering lowcarbon transportation[J].ZHEJIANG ELECTRIC POWER,2024,v.43;No.338(06):69-79.
[17] 马永翔,韩子悦,闫群民,等. 考虑电动汽车充电负荷及储能寿命的充电站储能容量配置优化[J]. 电网与清洁能源, 2024, 40(04): 92-101.
Ma Yongxiang, Han Ziyue, Yan Qunmin, Wan Jiapeng,Dan Wenguo, "Optimization of Energy Storage Capacity Configuration for Charging Stations Considering Electric Vehicle Charging Load and Energy Storage Lifespan," Power Grid and Clean Energy, vol. 40, no. 4, pp. 92-101, 2024.
[18] E. Dokur, N. Erdogan and S. Kucuksari, EV Fleet Charging Load Forecasting Based on Multiple Decomposition With CEEMDAN and Swarm Decomposition[J]. IEEE Access, 2022, 10:62330-62340.
[19] 许洪华,邵桂萍,鄂春良,等. 我国未来能源系统及能源转型现实路径研究[J]. 发电技术, 2023, 44(04): 484-491.
Honghua XU, Guiping SHAO, Chunliang E, Jindong GUO.Research on China's Future Energy System and the Realistic Path of Energy Transformation[J]. Power Generation Technology, 2023, 44(4): 484-491.
[20] 胡泽春,邵成成,何方,等.电网与交通网耦合的设施规划与运行优化研究综述及展望[J].电力系统自动化,2022,46(12):3-19.
HU Zechun, SHAO Chengcheng, He Fang, et al.Review and prospect of research on facility planning and optimal operation for coupled power and transportation networks[J]. Automation of Electric Power Systems, 2022, 46(12): 3-19.
[21] 沈筱琦,方鑫,谭林林,等. 基于居民出行模拟的电动汽车负荷时空分布预测[J]. 电力工程技术, 2024, 43(03): 130-139.
Shen Xiaoqi, Fang Xin, Tan Linlin, Li Xinguo,Sun Jiaqi, "Prediction of Spatio-Temporal Distribution of Electric Vehicle Load Based on Resident Travel Simulation," Electric Power Engineering Technology, vol. 43, no. 3, pp. 130-139, 2024.
[22] 谢龙韬,谢仕炜,陈铠悦,等.考虑用户出行成本预算的电力-交通耦合网络充电站定价策略[J].电力系统自动化,2024,48(7):201-209.
XIE Longtao, XIE Shiwei, CHEN Kaiyue, et al.Pricing Strategy of Charging Station in Power-Transportation Coupling Network Considering User Travel Cost Budget[J]. Automation of Electric Power Systems, 2024, 48(7):201-209.
[23] 张琳娟,许长清,王利利,等.基于OD矩阵的电动汽车充电负荷时空分布预测[J].电力系统保护与控制,2021,49(20):82-91.
ZHANG Linjuan, XU Changqing, WANG Lili, et al.OD matrix based spatiotemporal distribution of EV charging load prediction[J]. Power System Protection and Control,2021,49(20):82-91.
[24] 锁军,李龙,贺瀚青,等.考虑交通路况的电动汽车充电负荷预测[J].电网与清洁能源,2022,38(10):141-147.
SUO Jun, LI Long, HE Hanqing, et al.Load forecasting of electric vehicle charging con-sidering traffic conditions[J]. Power System and Clean Energy,2022,38(10):141-147.
[25] 李含玉,杜兆斌,陈丽丹,等.基于出行模拟的电动汽车充电负荷预测模型及V2G评估[J].电力系统自动化,2019,43(21):88-96.
LI Hanyu, DU Zhaobin, CHEN Lidan.et al.Trip simulation based charging load forecasting model and vehicle-to-grid evaluation of electric vehicles[J]. Automation of Electric Power Systems, 2019, 43(21): 88-96.
[26] 屈克庆,赵登辉,毛玲,赵晋斌,杨钏.考虑城市空间结构和用户有限理性的电动汽车快充负荷预测[J].南方电网技术,2024,18(10):151-160.
QU Keqing,ZHAO Denghui,MAO Ling,ZHAO Jinbin,YANG Chuan.Fast Charging Load Forecasting of Electric Vehicles Considering Urban Spatial Structure and User's Bounded Rationality[J].Southern Power System Technology,2024,18(10):151-160.
[27] 韩林阳,叶承晋,朱超,等.高温天气下计及用户意愿的城市充电负荷空间引导策略[J].电力系统自动化,2024,48(10):139-150.
HAN Linyang, YE Chengjin, ZHU Chao, et al.Spatial Guidance Strategy for Urban Charging Loads in High-temperature Weather Considering User Willingness[J]. Automation of Electric Power Systems, 2024, 48(10):139-150.
[28] XIANG Y, JIANG Z, GU C, et al.Electric vehicle charging in smart grid: a spatial-temporal simulation method[J]. Energy, 2019, 189: 116221-116221.
[29] 胡博,张鹏飞,黄恩泽,等.基于图WaveNet的电动汽车充电负荷预测[J].电力系统自动化,2022,46(16):207-213.
HU Bo, ZHANG Pengfei, HUANG Enze, et al.Graph WaveNet Based Charging Load Forecasting of Electric Vehicle[J]. Automation of Electric Power Systems, 2022, 46(16):207-213.
[30] 张建宏,赵兴勇,王秀丽. 考虑奖励机制的电动汽车充电优化引导策略 [J]. 电网与清洁能源, 2024, 40 (01): 102-108+118.
Zhang Jianhong, Zhao Xingyong,Wang Xiuli, "Electric Vehicle Charging Optimization Guidance Strategy Considering Reward Mechanism," Power Grid and Clean Energy, vol. 40, no.1, pp. 102-108, 118, 2024.
[31] TANG D, WANG P.Probabilistic Modeling of nodal charging demand based on spatial-temporal dynamics of moving electric vehicles[J]. IEEE Transactions on Smart Grid, 2016, 7(2): 627-636.
[32] Yi T, Zhang C, Lin T, et al. Research on the spatial-temporal distribution of electric vehicle charging load demand: A case study in China[J]. Journal of Cleaner Production, 2020, 242(Jan.1): 118457.1-118457.15.
[33] 宋雨浓,林舜江,唐智强等.基于动态车流的电动汽车充电负荷时空分布概率建模[J].电力系统自动化,2020,44(23):47-56.
SONG Yunong,LIN Shunjiang,TANG Zhiqiang,et al.Spatial-Temporal Distribution Probabilistic Modeling of Electric Vehicle Charging Load Based on Dynamic Traffic Flow[J].Automation of Electric Power Systems,2020,44(23):47-56.
[34] 李晓辉,李磊,刘伟东,等.基于动态交通信息的电动汽车充电负荷时空分布预测[J].电力系统保护与控制,2020,48(01):117~125.
LI Xiaohui,LI Lei,LIU Weidong,et al.Spatial-temporal distribution prediction of charging load for electric vehicles based on dynamic traffic information[J].Power System Protection and Control,2020,48(1):117-125
[35] 邵尹池,穆云飞,余晓丹,等.“车-路-网”模式下电动汽车充电负荷时空预测及其对配电网潮流的影响[J].中国电机工程学报,2017,37(18):5207-5219+5519.
SHAO Yinchi, MU Yunfei, YU Xiaodan, et al. A spatial-temporal charging load forecast and impact analysis method for distribution network using EVs-traffic-distribution model[J]. Proceedings of the CSEE, 2017, 37(18): 5207-5219+5519.
[36] 刘志强,张谦,朱熠,等.计及车-路-站-网融合的电动汽车充电负荷时空分布预测[J].电力系统自动化,2022,46(12):36-45.
LIU Zhiqiang, ZHANG Qian, ZHU Yi, et al.Spatial-temporal distribution prediction of charging loads for electric vehicles con-sidering vehicle-road-station-grid integration[J].Automation of Electric Power Systems,2022,46(12):36-45.
[37] 郑远硕,李峰,董九玲,等.“车-路-网”模式下电动汽车充放电时空灵活性优化调度策略[J].电力系统自动化,2022,46(12):88~97.
ZHENG Yuanshuo, LI Feng, DONG Jiuling, et al.Optimal Dispatch Strategy of Spatio-Temporal Flexibility for Electric Vehicle Charging and Discharging in Vehicle-Road-Grid Mode[J]. Automation of Electric Power Systems, 2022, 46(12):88-97.
[38] 吴钉捷,李晓露.基于实时出行需求和交通路况的电动汽车充电负荷预测[J].电力建设,2020,41(08):57-67.
WU Dingjie, LI Xiaolu.Charging load prediction of electric vehicle according to real-time travel demand and traffic conditions[J]. Electric Power Construction,2020,41(08):57-67.
[39] 姜欣,冯永涛,熊虎,等.基于出行概率矩阵的电动汽车充电站规划[J].电工技术学报,2019,34(S1):272-281.
JIANG Xin, FENG Yongtao, XIONG Hu, et al.Electric vehicle charging station planning based on travel probability matrix[J]. Transactions of China Electrotechnical Society, 2019, 34(S1): 272-281.

基金

国网河南省电力公司科技项目(5217L024000U)

PDF(1380 KB)

Accesses

Citation

Detail

段落导航
相关文章
AI小编
你好!我是《电力建设》AI小编,有什么可以帮您的吗?

/