基于APS-IPSO的构网型储能跟网-构网双模式切换策略

陈逍阳, 李晨阳, 徐恒山, 马鑫, 米玛, 索朗平措

电力建设 ›› 0

PDF(1084 KB)
PDF(1084 KB)
电力建设 ›› 0

基于APS-IPSO的构网型储能跟网-构网双模式切换策略

  • 陈逍阳1, 李晨阳1, 徐恒山1, 马鑫2, 米玛3, 索朗平措3
作者信息 +

Grid-forming and Grid-Following Dual-Mode Switching Strategy Based on APS-IPSO for Grid-Forming Energy Storage

  • CHEN Xiaoyang1, LI Chenyang1, XU Hengshan1, MA Xin2, MI Ma3, SUO Langpingcuo3
Author information +
文章历史 +

摘要

【目的】 针对构网型储能因变流器单一运行模式难以适应电网短路比变化及复杂故障扰动的问题,提出了一种基于幅相同步(amplitude and phase synchronization, APS)的双模式改进切换策略,并使用改进粒子群优化(improved particle swarm optimization, IPSO)算法对其关键参数进行辨识。【方法】 首先,分析了常规跟网-构网模式切换策略存在的不足,揭示了功率环电压相位累计误差及其造成的无功电压偏差使得模式切换时暂态冲击增大的机理;基于此,提出了幅相同步补偿机制,在模式切换过程中同步修正电压幅值和相位信号,实现了内环电流参考信号的平滑变化;然后,针对常规切换策略中跟踪环参数难以整定的缺点,采用基于非线性惯性权重和学习因子的IPSO算法对4组跟踪环参数进行自适应辨识以提升储能变流器对跟网和构网模式运行点的跟踪性能和扰动抑制效果。【结果】 在Matlab/Simulink里搭建MW级构网型储能电磁暂态模型开展验证,结果表明:所提控制策略可以顺利实现暂态功率冲击小于0.02 p.u.,且在连续切换和运行点波动场景下均能稳定运行。【结论】 相比于常规切换策略,基于APS-IPSO的改进策略可实现储能变流器在跟网-构网模式切换中冲击小、稳定性好,为后续新能源场站内部署具备模式切换的储能或新能源机组提供了理论基础。

Abstract

【Objectives】 In order to solve the problem that grid-based energy storage is difficult to adapt to the change of grid short-circuit ratio and complex fault disturbance due to the single operation mode of the converter, this paper proposes a dual-mode improved switching strategy based on amplitude and phase synchronization (APS), and uses the improved particle swarm optimization (IPSO) to identify its key parameters. 【Methods】 Firstly, this paper analyzes the shortcomings of the conventional Grid-forming and Grid-following Dual-Mode Switching Strategy, and reveals the mechanism of the voltage phase accumulation error of the power loop and the resulting reactive voltage deviation that increases the transient impact during mode switching. Based on this, an amplitude and phase synchronous compensation mechanism is proposed, which simultaneously corrects the voltage amplitude and phase signal during the mode switching process and realizes the smooth change of the inner loop current reference signal. Then, in view of the shortcomings of the tracking loop parameters in the conventional switching strategy, an IPSO algorithm based on nonlinear inertia weights and learning factors is used to adaptively identify the parameters of the four groups of tracking loops, so as to improve the tracking performance and disturbance suppression effect of the energy storage converter on the operation points of the Grid-following and Grid-forming Modes. 【Results】 Finally, a MW-level grid- forming energy storage electromagnetic transient model was built in Matlab/Simulink for verification, and the results showed that the proposed control strategy could successfully achieve a transient power impact of less than 0.02 p.u., and could operate stably in the scenarios of continuous switching and operation point fluctuation. 【Conclusions】 Compared with the conventional switching strategy, the improved strategy based on APS-IPSO can realize the small switching impact and good stability of the energy storage converter in the Grid-following-Grid-forming Modes, and provides a theoretical basis for the subsequent deployment of energy storage or new energy units with mode switching in new energy stations.

关键词

构网型储能 / 弱电网 / 恒功率控制 / 虚拟同步机 / 控制模式切换

Key words

grid-forming energy storage / weak power grids / constant power control / virtual synchronous generator / control mode switching

引用本文

导出引用
陈逍阳, 李晨阳, 徐恒山, 马鑫, 米玛, 索朗平措. 基于APS-IPSO的构网型储能跟网-构网双模式切换策略[J]. 电力建设. 0
CHEN Xiaoyang, LI Chenyang, XU Hengshan, MA Xin, MI Ma, SUO Langpingcuo. Grid-forming and Grid-Following Dual-Mode Switching Strategy Based on APS-IPSO for Grid-Forming Energy Storage[J]. Electric Power Construction. 0
中图分类号: TM732   

参考文献

[1] 王凤, 许建中. 基于构网储能型SVG的自适应限流策略[J]. 电力系统保护与控制, 2024, 52(23): 54-64.
WANG Feng, XU Jianzhong.Adaptive current limiting strategy based on grid-forming and energy-storage SVG[J]. Power System Protection and Control, 2024, 52(23): 54-64.
[2] 刘瑞平, 袁亮, 胡铭欣, 等. 含构网型新能源发电单元的孤立电网暂态稳定性提升策略[J]. 电力科学与技术学报, 2024, 39(6): 152-161.
LIU Ruiping, YUAN Liang, HU Mingxin, et al.A transient stability improvement strategy of isolated power grids with grid-forming-based renewable energy power generation units[J]. Journal of Electric Power Science and Technology, 2024, 39(6): 152-161.
[3] 胡英杰, 李强, 李群. 考虑容量限制的构网型光储系统惯量与一次调频参数优化配置方法[J]. 中国电力, 2024, 57(10): 115-122.
HU Yingjie, LI Qiang, LI Qun.Co-optimization of inertia and droop control coefficient for grid-forming photovoltaic-storage system considering capacity limits[J]. Electric Power, 2024, 57(10): 115-122.
[4] 林涛, 林政阳, 李晨, 等. 基于TCN的跟网/构网混合型新能源场站并网系统小干扰稳定性快速评估[J]. 电力科学与技术学报, 2024, 39(4): 169-177.
LIN Tao, LIN Zhengyang, LI Chen, et al.Small signal stability assessment of grid-connected system for grid-following/grid-forming hybrid new energy stations based on TCN[J]. Journal of Electric Power Science and Technology, 2024, 39(4): 169-177.
[5] 阮亮, 王杨, 肖先勇, 等. 跟网型和构网型变流器动态交互特性分析[J]. 智慧电力, 2024, 52(7): 103-110.
RUAN Liang, WANG Yang, XIAO Xianyong, et al.Dynamic interaction control characteristic analysis of gridfollowing and grid-forming inverters[J]. Smart Power, 2024, 52(7): 103-110.
[6] 符杨, 陈禹瑾, 季亮, 等. 考虑功率解耦的构网型逆变器的低电压穿越控制策略[J]. 电力系统保护与控制, 2024, 52(15): 1-13.
FU Yang, CHEN Yujin, JI Liang, et al.Low voltage ride-through control strategy of a grid-forming inverter considering power decoupling[J]. Power System Protection and Control, 2024, 52(15): 1-13.
[7] 宋璐瑶, 陈俊儒, 程静, 等. 构网型新能源场站环流产生机理研究[J]. 智慧电力, 2024, 52(3): 8-16.
SONG Luyao, CHEN Junru, CHENG Jing, et al.Mechanism of generating circulating current in grid-forming renewable energy power plant[J]. Smart Power, 2024, 52(3): 8-16.
[8] 伊军, 克帕依吐·吐尔逊, 张龙, 等. 构网型储能变流器VSG控制技术综述[J]. 自动化仪表, 2024, 45(10): 1-6.
YI Jun, KEPAITU Turson, ZHANG Long, et al.Review of VSG control techniques for grid- forming energy storage converters[J]. Process Automation Instrumentation, 2024, 45(10): 1-6.
[9] 王新宝, 葛景, 韩连山, 等. 构网型储能支撑新型电力系统建设的思考与实践[J]. 电力系统保护与控制, 2023, 51(5): 172-179.
WANG Xinbao, GE Jing, HAN Lianshan, et al.Theory and practice of grid-forming BESS supporting the construction of a new type of power system[J]. Power System Protection and Control, 2023, 51(5): 172-179.
[10] 张建坡, 柴欣茹, 辛光明, 等. 换相失败场景下构网型风机对送端暂态过电压影响因素分析及抑制策略研究[J]. 智慧电力, 2024, 52(9): 1-8, 17.
ZHANG Jianpo, CHAI Xinru, XIN Guangming, et al.Influencing factors of GFM-PMSG on sending-end transient overvoltage under commutation failure & its suppression strategies[J]. Smart Power, 2024, 52(9): 1-8, 17.
[11] PISHBAHAR H, BLAABJERG F, SABOORI H.Emerging grid-forming power converters for renewable energy and storage resources integration-A review[J]. Sustainable Energy Technologies and Assessments, 2023, 60: 103538.
[12] MIRMOHAMMAD M, AZAD S P.Control and stability of grid-forming inverters: A comprehensive review[J]. Energies, 2024, 17(13): 3186.
[13] 李立, 王佳明, 张青蕾, 等. 兼顾系统频率稳定性和小干扰稳定性的构网型储能参数优化方法[J]. 电力建设, 2023, 44(12): 125-135.
LI Li, WANG Jiaming, ZHANG Qinglei, et al.Parameter optimization method of grid-forming energy storage considering system frequency stability and small signal stability[J]. Electric Power Construction, 2023, 44(12): 125-135.
[14] 刘彦军, 何维, 朱东海, 等. 基于二阶VSG的变换器频率支撑能力评估及提升方法[J]. 电力建设, 2024, 45(11): 102-113.
LIU Yanjun, HE Wei, ZHU Donghai, et al.Evaluation and improving method of frequency support of converters based on second-order VSG section[J]. Electric Power Construction, 2024, 45(11): 102-113.
[15] 韩应生, 孙海顺, 秦世耀, 等. 电压源型双馈风电并网系统小扰动低频稳定性分析[J]. 电工技术学报, 2023, 38(5): 1312-1324, 1374.
HAN Yingsheng, SUN Haishun, QIN Shiyao, et al.Low-frequency stability analysis of voltage-sourced doubly-fed wind power grid-connected system under small disturbance[J]. Transactions of China Electrotechnical Society, 2023, 38(5): 1312-1324, 1374.
[16] 王泽昆, 程鹏, 贾利民. 单电压环构网型并网逆变器暂态稳定性分析[J]. 电力系统保护与控制, 2024, 52(10): 118-127.
WANG Zekun, CHENG Peng, JIA Limin.Transient stability analysis of single voltage loop grid-forming inverter[J]. Power System Protection and Control, 2024, 52(10): 118-127.
[17] 王东泽, 孙海顺, 黄碧月, 等. 基于虚拟同步控制的电压源型直驱风电机组并网稳定性分析[J]. 高电压技术, 2022, 48(8): 3282-3294.
WANG Dongze, SUN Haishun, HUANG Biyue, et al.Analysis of grid-connected stability of voltage-source-type PMSG-based wind turbine based on virtual synchronous control[J]. High Voltage Engineering, 2022, 48(8): 3282-3294.
[18] 李辉, 王坤, 胡玉, 等. 双馈风电系统虚拟同步控制的阻抗建模及稳定性分析[J]. 中国电机工程学报, 2019, 39(12): 3434-3443.
LI Hui, WANG Kun, HU Yu, et al.Impedance modeling and stability analysis of virtual synchronous control based on doubly-fed wind generation systems[J]. Proceedings of the CSEE, 2019, 39(12): 3434-3443.
[19] 谢震, 许可宝, 高翔, 等. 弱电网下基于混合控制型双馈风电机组稳定性分析[J]. 中国电机工程学报, 2022, 42(20): 7426-7439.
XIE Zhen, XU Kebao, GAO Xiang, et al.Stability analysis of DFIG-based wind turbines based on hybrid control in weak grid[J]. Proceedings of the CSEE, 2022, 42(20): 7426-7439.
[20] LI M, ZHANG X, YANG Y, et al.The grid impedance adaptation dual mode control strategy in weak grid[C]//2018 International Power Electronics Conference (IPEC-Niigata 2018 -ECCE Asia). IEEE, 2018: 2973-2979.
[21] 付强, 杜文娟, 王海风, 等. 多端柔性直流输电中换流站的同步切换控制策略[J]. 电网技术, 2018, 42(4): 1241-1251.
FU Qiang, DU Wenjuan, WANG Haifeng, et al.Synchronous switching control strategy for VSC station in MTDC network[J]. Power System Technology, 2018, 42(4): 1241-1251.
[22] 王建建, 孙凯祺, 李可军, 等. 柔性互联配电网换流器控制模式平滑切换策略[J]. 电力系统自动化, 2022, 46(14): 63-72.
WANG Jianjian, SUN Kaiqi, LI Kejun, et al.Smooth switching strategy of control mode for converter in flexible interconnected distribution network[J]. Automation of Electric Power Systems, 2022, 46(14): 63-72.
[23] 周于清, 姚伟, 宗启航, 等. 基于运行短路比的新能源场站中跟/构网可切换单元的最优配置方法[J]. 电网技术, 2024, 48(3): 1091-1104.
ZHOU Yuqing, YAO Wei, ZONG Qihang, et al.Optimal configuration of grid-following/grid-forming switchable units in new energy stations based on operating short-circuit ratio[J]. Power System Technology, 2024, 48(3): 1091-1104.
[24] 王福忠, 陶新坤, 田广强. 基于改进果蝇算法优化的微电网逆变器恒功率控制算法[J]. 电力系统保护与控制, 2021, 49(21): 71-79.
WANG Fuzhong, TAO Xinkun, TIAN Guangqiang.Constant power control algorithm for a microgrid inverter based on an improved fruit fly algorithm[J]. Power System Protection and Control, 2021, 49(21): 71-79.
[25] 吴恒, 阮新波, 杨东升. 弱电网条件下锁相环对LCL型并网逆变器稳定性的影响研究及锁相环参数设计[J]. 中国电机工程学报, 2014, 34(30): 5259-5268.
WU Heng, RUAN Xinbo, YANG Dongsheng.Research on the stability caused by phase-locked loop for LCL-type grid-connected inverter in weak grid condition[J]. Proceedings of the CSEE, 2014, 34(30): 5259-5268.
[26] 康思伟, 董文凯, 郭诗然, 等. 基于虚拟同步机控制的新能源发电并网系统小干扰稳定临界短路比[J]. 电力建设, 2022, 43(3): 131-140.
KANG Siwei, DONG Wenkai, GUO Shiran, et al.Critical short-circuit ratio of small-signal stability for a grid-connected renewable power generation system based on virtual synchronous generator control[J]. Electric Power Construction, 2022, 43(3): 131-140.
[27] 陆韶琦, 徐政. 采用功率同步控制的MMC-HVDC功率极限分析[J]. 中国电机工程学报, 2016, 36(7): 1868-1876.
LU Shaoqi, XU Zheng.Analysis of the maximum power flow in power synchronization control based MMC-HVDC[J]. Proceedings of the CSEE, 2016, 36(7): 1868-1876.
[28] 杨鹏, 刘锋, 姜齐荣, 等. “双高” 电力系统大扰动稳定性: 问题、挑战与展望[J]. 清华大学学报(自然科学版), 2021, 61(5): 403-414.
YANG Peng, LIU Feng, JIANG Qirong, et al.Large-disturbance stability of power systems with high penetration of renewables and inverters: Phenomena, challenges, and perspectives[J]. Journal of Tsinghua University (Science and Technology), 2021, 61(5): 403-414.
[29] 韩思鹏, 蒋晓艳, 罗意, 等. 遮阴条件下光伏MPPT自适应粒子群算法优化[J]. 太阳能学报, 2022, 43(06): 99-105.
HAN Sipeng, JIANG Xiaoyan, LUO Yi, et al.Optimization of PV MPPT adaptive particle swarm optimization under shading conditions[J]. Acta Energiae Solaris Sinica, 2022, 43(06): 99-105.
[30] 朱霄, 周振雄, 李镇, 等. 基于改进PSO算法在局部遮阴下光伏系统MPPT中的应用[J]. 北华大学学报(自然科学版), 2023, 24(3): 394-399.
ZHU Xiao, ZHOU Zhenxiong, LI Zhen, et al.Application of photovoltaic system MPPT under local shading based on improved PSO algorithm[J]. Journal of Beihua University (Natural Science), 2023, 24(3): 394-399.
[31] 徐恒山, 李颜汝, 李文昊, 等. 融合寻优算法的双馈风力机控制参数分步辨识方法[J]. 太阳能学报, 2024, 45(4): 247-256.
XU Hengshan, LI Yanru, LI Wenhao, et al.Stepwise identification method of control parameters for dfig based on composite optimization algorithm[J]. Acta Energiae Solaris Sinica, 2024, 45(4): 247-256.

基金

宁夏自然科学基金项目(2024AAC03744); 三峡大学人才科研启动基金项目(N2024340006)

PDF(1084 KB)

Accesses

Citation

Detail

段落导航
相关文章
AI小编
你好!我是《电力建设》AI小编,有什么可以帮您的吗?

/