大容量电压源型逆变器在新型电力系统构建中的关键技术和创新展望

马为民, 李明, 薛英林, 王莹鑫, 吴方劼, 赵峥, 李探

电力建设 ›› 2025

PDF(824 KB)
PDF(824 KB)
电力建设 ›› 2025

大容量电压源型逆变器在新型电力系统构建中的关键技术和创新展望

  • 马为民, 李明, 薛英林, 王莹鑫, 吴方劼, 赵峥, 李探
作者信息 +

Key Technologies and Innovation Prospects of Large-Capacity Voltage Sourced Inverter in the Construction of New Power Systems

  • MA Weimin, LI Ming, XUE Yinglin, WANG Yingxin, WU Fangjie, ZHAO Zheng, LI Tan
Author information +
文章历史 +

摘要

【目的】 基于模块化多电平技术的大容量电压源型逆变器(static var generator,SVG),可实现主动构网、无功补偿、谐波抑制、阻抗重塑等多种功能,是支撑新型电力系统构建的重要设备。【方法】 对大容量电压源型逆变器在新型电力系统构建中的关键技术进行了论述。首先,回顾了SVG的发展历程和基本拓扑原理,梳理了SVG与MMC演化转换关系,分析了SVG支撑电网强度的量化评估公式,总结了SVG保障新型电力系统在高比例新能源、高比例电力电子设备接入下安全稳定运行的优势。然后,重点对基于SVG的多源换相换流器(multi source line commutation converter,SLCC)技术、有源滤波器、构网型SVG、储能型SVG等关键技术进行了分析。最后,对SVG在未来新型电力系统中可发挥的关键作用和后续重点研究方向进行了展望。【结果】 在未来新型电力系统构建中,大容量SVG在大规模新能源孤岛送出、弱系统电压支撑、广域谐波抑制等方面应用前景广阔。【结论】 孤岛新能源下SVG预充电和黑启动、多SVG间协调配合控制等方面有待开展进一步深入研究。

Abstract

[Objective] The large-capacity SVG based on modular multi-level technology can realize various functions such as active network construction, reactive power compensation, harmonic suppression, impedance remodeling, etc., and is an important equipment to support the construction of new power systems. [Methods] This paper discuss the key technologies and innovation prospects of large-capacity voltage sourced inverter in the construction of new power systems, reviews the development history and basic topological principles of SVG, sorts out the evolutionary conversion relationship between SVG and modular multilevel converter (MMC), analyzes the quantitative evaluation formula of AC grid strength supporting by SVG, and summarizes the advantages of SVG to ensure the safe and stable operation of the new power system with a high proportion of new energy and a high proportion of power electronic equipment. Then, the key technologies such as SVG-based multi-source commutation converter technology (SLCC), active filter, grid-forming SVG, and energy storage type SVG were analyzed. Finally, the key role that SVG play in constructing new power system and the key research directions in the future are prospected. [Results] In the construction of future new power systems, large-capacity SVG holds broad application prospects in areas such as large-scale new energy island export, weak system voltage support, and wide-area harmonic suppression. [Conclusions] Further in-depth research is needed on SVG pre-charging and black start, as well as coordinated control among multiple SVGs in isolated new energy systems.

关键词

新型电力系统 / 电网强度 / 多源换相 / 有源滤波 / 构网SLCC

Key words

new power system / grid strength / multi-source commutation / active filtering / grid forming SLCC

引用本文

导出引用
马为民, 李明, 薛英林, 王莹鑫, 吴方劼, 赵峥, 李探. 大容量电压源型逆变器在新型电力系统构建中的关键技术和创新展望[J]. 电力建设. 2025
MA Weimin, LI Ming, XUE Yinglin, WANG Yingxin, WU Fangjie, ZHAO Zheng, LI Tan. Key Technologies and Innovation Prospects of Large-Capacity Voltage Sourced Inverter in the Construction of New Power Systems[J]. Electric Power Construction. 2025
中图分类号: TM46   

参考文献

[1] 舒印彪, 陈国平, 贺静波, 等. 构建以新能源为主体的新型电力系统框架研究[J]. 中国工程科学, 2021, 23(6): 61-69.
SHU Yinbiao, CHEN Guoping, HE Jingbo, et al.Building a new electric power system based on new energy sources[J]. Strategic Study of CAE, 2021, 23(6): 61-69.
[2] 周孝信, 陈树勇, 鲁宗相, 等. 能源转型中我国新一代电力系统的技术特征[J]. 中国电机工程学报, 2018, 38(7): 1893-1904, 2205.
ZHOU Xiaoxin, CHEN Shuyong, LU Zongxiang, et al.Technology features of the new generation power system in China[J]. Proceedings of the CSEE, 2018, 38(7): 1893-1904, 2205.
[3] 《新型电力系统发展蓝皮书》编写组. 新型电力系统发展蓝皮书[M]. 北京: 中国电力出版社, 2023.
[4] 韩肖清, 李廷钧, 张东霞, 等. 双碳目标下的新型电力系统规划新问题及关键技术[J]. 高电压技术, 2021, 47(9): 3036-3046.
HAN Xiaoqing, LI Tingjun, ZHANG Dongxia, et al.New issues and key technologies of new power system planning under double carbon goals[J]. High Voltage Engineering, 2021, 47(9): 3036-3046.
[5] 马宁宁, 谢小荣, 亢朋朋, 等. 高比例风电并网系统次同步振荡的广域监测与分析[J]. 中国电机工程学报, 2021, 41(1): 65-74, 398.
MA Ningning, XIE Xiaorong, KANG Pengpeng, et al.Wide-area monitoring and analysis of subsynchronous oscillation in power systems with high-penetration of wind power[J]. Proceedings of the CSEE, 2021, 41(1): 65-74, 398.
[6] 郭贤珊, 刘泽洪, 李云丰, 等. 柔性直流输电系统高频振荡特性分析及抑制策略研究[J]. 中国电机工程学报, 2020, 40(1): 19-29, 370.
GUO Xianshan, LIU Zehong, LI Yunfeng, et al.Characteristic analysis of high-frequency resonance of flexible high voltage direct current and research on its damping control strategy[J]. Proceedings of the CSEE, 2020, 40(1): 19-29, 370.
[7] 马为民, 蒲莹, 宫勋. 适应高比例新能源电源外送的特高压直流控制器[J]. 电网技术, 2023, 47(3): 1262-1268.
MA Weimin, PU Ying, GONG Xun.UHVDC current controller for high proportional new energy transmission[J]. Power System Technology, 2023, 47(3): 1262-1268.
[8] 辛保安, 郭铭群, 王绍武, 等. 适应大规模新能源友好送出的直流输电技术与工程实践[J]. 电力系统自动化, 2021, 45(22): 1-8.
XIN Baoan, GUO Mingqun, WANG Shaowu, et al.Friendly HVDC transmission technologies for large-scale renewable energy and their engineering practice[J]. Automation of Electric Power Systems, 2021, 45(22): 1-8.
[9] 辛保安, 单葆国, 李琼慧, 等. “双碳” 目标下“能源三要素” 再思考[J]. 中国电机工程学报, 2022, 42(9): 3117-3126.
XIN Baoan, SHAN Baoguo, LI Qionghui, et al.Rethinking of the “three elements of energy” toward carbon peak and carbon neutrality[J]. Proceedings of the CSEE, 2022, 42(9): 3117-3126.
[10] 刘泽洪, 马为民, 王绍武, 等. 混合级联特高压直流输电系统方案设计及动模试验验证[J]. 电网技术, 2021, 45(3): 1214-1222.
LIU Zehong, MA Weimin, WANG Shaowu, et al.Schematic design of hybrid cascaded ultra HVDC and its modification in dynamic model experiment[J]. Power System Technology, 2021, 45(3): 1214-1222.
[11] 马进, 赵大伟, 钱敏慧, 等. 大规模新能源接入弱同步支撑直流送端电网的运行控制技术综述[J]. 电网技术, 2017, 41(10): 3112-3120.
MA Jin, ZHAO Dawei, QIAN Minhui, et al.Reviews of control technologies of large-scale renewable energy connected to weakly-synchronized sending-end DC power grid[J]. Power System Technology, 2017, 41(10): 3112-3120.
[12] 何国庆, 王伟胜, 刘纯, 等. 风电基地经特高压直流送出系统换相失败故障(一): 送端风电机组暂态无功电压建模[J]. 中国电机工程学报, 2022, 42(12): 4391-4405.
HE Guoqing, WANG Weisheng, LIU Chun, et al.Commutation failure of UHVDC system for wind farm integration (part Ⅰ): transient reactive power and voltage modeling of wind powers in sending terminal grid[J]. Proceedings of the CSEE, 2022, 42(12): 4391-4405.
[13] 金一丁, 于钊, 李明节, 等. 新一代调相机与电力电子无功补偿装置在特高压交直流电网中应用的比较[J]. 电网技术, 2018, 42(7): 2095-2102.
JIN Yiding, YU Zhao, LI Mingjie, et al.Comparison of new generation synchronous condenser and power electronic reactive-power compensation devices in application in UHV DC/AC grid[J]. Power System Technology, 2018, 42(7): 2095-2102.
[14] 陈中. 级联H桥储能变换器及其控制技术研究[D]. 合肥: 合肥工业大学, 2015.
CHEN Zhong.Research on cascaded H-bridge converter for energy storage and its control techniques[D]. Hefei: Hefei University of Technology, 2015.
[15] 张建文, 孙人成, 周剑桥, 等. 多中压交流端口链式电池储能功率变换系统[J]. 中国电机工程学报, 2022, 42(24): 8972-8984.
ZHANG Jianwen, SUN Rencheng, ZHOU Jianqiao, et al.A novel energy storage power conversion system based on multiple medium voltage AC-ports cascaded H-bridge converter[J]. Proceedings of the CSEE, 2022, 42(24): 8972-8984.
[16] 杨滢, 杨晓雷, 项中明, 等. 参与一次调频储能型风电场的交流外送振荡特性分析[J]. 智慧电力, 2023, 51(9): 105-112.
YANG Ying, YANG Xiaolei, XIANG Zhongming, et al.Oscillation characteristic analysis of wind farm with energy storage participating primary frequency control[J]. Smart Power, 2023, 51(9): 105-112.
[17] 陈明泉. 闽粤联网工程有源滤波器设计方案及其二次控保系统研究[J]. 电气技术, 2022, 23(8): 95-102.
CHEN Mingquan.Research on active power filter design scheme and secondary control-protection system of the Fujian-Guangdong interconnection project[J]. Electrical Engineering, 2022, 23(8): 95-102.
[18] 马为民, 王玲, 李明, 等. 新型电力系统中的特高压直流输电SLCC换流技术[J]. 高电压技术, 2022, 48(12): 4941-4948.
MA Weimin, WANG Ling, LI Ming, et al.SLCC converter technology of UHVDC transmission in new power system[J]. High Voltage Engineering, 2022, 48(12): 4941-4948.
[19] 李志强, 何凤军, 郭强, 等. 青南新能源集中送出地区动态无功补偿方案对比研究[J]. 现代电力, 2021, 38(1): 87-93.
LI Zhiqiang, HE Fengjun, GUO Qiang, et al.Comparative study on dynamic reactive power compensation scheme in the concentrated delivery area of new energy in southern Qinghai[J]. Modern Electric Power, 2021, 38(1): 87-93.
[20] 马为民, 李明, 吴方劼, 等. 基于SVG的海上风电不控整流直流输电系统及控制方法: CN116154832A[P].2023-05-23.
MA Weimin, LI Ming, WU Fangjie, et al. SVG-based offshore wind power uncontrolled rectification DC power transmission system and control method: CN116154832A[P].2023-05-23.
[21] 张家玮, 张琛, 史先强, 等. 储能型静止无功发生装置及其自同步电压源控制[J]. 高电压技术, 2023, 49(1): 61-71.
ZHANG Jiawei, ZHANG Chen, SHI Xianqiang, et al.Energy-storage-type static var generator and its autonomous-synchronization voltage source control[J]. High Voltage Engineering, 2023, 49(1): 61-71.
[22] 徐惠勇. 无功功率补偿中SVG技术的研究现状与发展[J]. 应用能源技术, 2012(2): 31-33.
XU Huiyong.Reactive power compensation in SVG technology research present situation and the development[J]. Applied Energy Technology, 2012(2): 31-33.
[23] 陈志斌. 静止无功发生器SVG综述[J]. 科技信息, 2012(7): 108, 93.
CHEN Zhibin. Overview of static var generator SVG[J]. Science & Technology Information, 2012(7): 108, 93.
[24] 王兆安, 杨君, 刘进军, 等. 谐波抑制和无功功率补偿[M]. 2版. 北京: 机械工业出版社, 2006.
[25] SUMI Y, HARUMOTO Y, HASEGAWA T, et al. New static var control using force-commutated inverters[J]. IEEE Transactions on Power Apparatus and Systems, 1981, PAS-100(9): 4216-4224.
[26] SOBTINK K H, RENZ K W, TYLL H.Operational experience and field tests of the SVG at rejsby hede[C]//POWERCON '98.1998 International Conference on Power System Technology. Proceedings. IEEE, 1998: 318-322.
[27] TWINING E, NEWMAN M J, LOH P C, et al.Voltage compensation in weak distribution networks using a D-STATCOM[C]//The Fifth International Conference on Power Electronics and Drive Systems, 2003. IEEE, 2004: 178-183.
[28] 刘文华, 梁旭, 姜齐荣, 等. 采用GTO逆变器的±20 Mvar STATCOM[J]. 电力系统自动化, 2000, 24(23): 19-23, 70.
LIU Wenhua, LIANG Xu, JIANG Qirong, et al.Development of ±20 Mvar statcom employing gto inverters[J]. Automation of Electric Power Systems, 2000, 24(23): 19-23, 70.
[29] 诸纪新. ±50 Mvar STATCOM装置在上海电网中的应用[J]. 电力建设, 2006, 27(12): 14-17.
ZHU Jixin.Application of ±50 mvar STATCOM in Shanghai power grid[J]. Electric Power Construction, 2006, 27(12): 14-17.
[30] 李斌, 张新雨, 何佳伟, 等. 计及保护动作时间协调配合的双馈风电场故障穿越策略[J]. 电力系统自动化, 2023, 47(24): 1-10.
LI Bin, ZHANG Xinyu, HE Jiawei, et al.Fault ride-through strategy for doubly-fed wind farms considering coordination of protection operation time[J]. Automation of Electric Power Systems, 2023, 47(24): 1-10.
[31] 詹长江, 吴恒, 王雄飞, 等. 构网型变流器稳定性研究综述[J]. 中国电机工程学报, 2023, 43(6): 2339-2359.
ZHAN Changjiang, WU Heng, WANG Xiongfei, et al.An overview of stability studies of grid-forming voltage source converters[J]. Proceedings of the CSEE, 2023, 43(6): 2339-2359.
[32] 王新宝, 葛景, 韩连山, 等. 构网型储能支撑新型电力系统建设的思考与实践[J]. 电力系统保护与控制, 2023, 51(5): 172-179.
WANG Xinbao, GE Jing, HAN Lianshan, et al.Theory and practice of grid-forming BESS supporting the construction of a new type of power system[J]. Power System Protection and Control, 2023, 51(5): 172-179.
[33] 刘钊汛, 秦亮, 杨诗琦, 等. 面向新型电力系统的电力电子变流器虚拟同步控制方法评述[J]. 电网技术, 2023, 47(1): 1-16.
LIU Zhaoxun, QIN Liang, YANG Shiqi, et al.Review on virtual synchronous generator control technology of power electronic converter in power system based on new energy[J]. Power System Technology, 2023, 47(1): 1-16.
[34] 张定华, 桂卫华, 王卫安, 等. 牵引变电所电能质量混合动态治理技术[J]. 中国电机工程学报, 2011, 31(7): 48-55.
ZHANG Dinghua, GUI Weihua, WANG Weian, et al.Hybrid dynamic power quality compensation technology for traction substation[J]. Proceedings of the CSEE, 2011, 31(7): 48-55.
[35] 刘健犇, 陈乔夫, 代少君, 等. 高压大容量串联混合型有源电力滤波器的关键技术[J]. 中国电机工程学报, 2013, 33(12): 1-9, 179.
LIU Jianben, CHEN Qiaofu, DAI Shaojun, et al.Key techniques of high-voltage and large-capacity series hybrid active power filters[J]. Proceedings of the CSEE, 2013, 33(12): 1-9, 179.
[36] 李双健, 杜夏冰, 贾秀芳, 等. 一种应用于LCC高压直流输电的级联H桥混合型有源滤波器[J]. 电网技术, 2021, 45(4): 1409-1416.
LI Shuangjian, DU Xiabing, JIA Xiufang, et al.A cascaded H-bridge hybrid active power filter applied to LCC-HVDC[J]. Power System Technology, 2021, 45(4): 1409-1416.

基金

国家电网公司科技项目(5100-202356816A-3-8-KJ)

PDF(824 KB)

Accesses

Citation

Detail

段落导航
相关文章
AI小编
你好!我是《电力建设》AI小编,有什么可以帮您的吗?

/