考虑氢能流与广义储能的异质能流系统低碳优化运行

马成廉, 李浩, 魏刚, 兰冰, 赵宇, 孙黎

电力建设 ›› 0

PDF(1624 KB)
PDF(1624 KB)
电力建设 ›› 0

考虑氢能流与广义储能的异质能流系统低碳优化运行

  • 马成廉1, 李浩1, 魏刚1,2, 兰冰1, 赵宇1, 孙黎1
作者信息 +

Low-carbon Optimal Operation of Heterogeneous Energy Flow System Considering Hydrogen Energy Flow and Generalized Energy Storage

  • MA Chenglian1, LI Hao1, WEI Gang1,2, LAN Bing1, ZHAO Yu1, SUN Li1
Author information +
文章历史 +

摘要

【目的】高比例可再生能源大规模并网会导致异质能流系统供需失衡。针对可再生能源消纳问题,研究氢能流与广义储能参与的异质能流系统低碳协同调控方式。【方法】首先,考虑氢能流参与的多能流交互和广义储能的灵活调控特性,构建综合成本、风光消纳率、碳排放量等指标评价优化运行综合效益;其次,基于系统碳排信息,构建基于能流交互的碳流拓扑模型,利用碳流信息辅助评估多目标优化结果;最后,以东北某实际区域系统进行仿真,研究源-荷-储协同互动特性,分析氢能流及广义储能参与对系统综合效益的优化效果。【结果】仿真结果表明,氢能流与广义储能的参与有效提升异质能流系统对可再生能源的消纳裕度,验证了所提方法的有效性与可行性。【结论】通过电-热-氢能流灵活交互,实现了能量的充分利用,增强了系统的动态调节能力,有效促进低碳能源渗透;考虑广义储能后,进一步促进低碳能源消纳,同时实现削峰填谷,推动异质能流系统向高效、清洁、低碳转型;通过对典型时段碳流分析,表明氢能流与广义储能的参与有效缓解了系统供需压力,利于异质能流系统低碳运行。所提策略为异质能流系统消纳可再生能源提供了新的思路和方法,具备良好的工程前景。

Abstract

[Objective] The large-scale integration of high-proportion renewable energy will lead to the imbalance between supply and demand of heterogeneous energy flow system (HEFS). Aiming at the problem of renewable energy consumption, the low-carbon coordinated control method of heterogeneous energy flow system with hydrogen energy flow and generalized energy storage is studied. [Methods] Firstly, considering the multi-energy flow interaction of hydrogen energy flow and the flexible regulation characteristics of generalized energy storage, the comprehensive cost, wind and solar consumption rate, carbon emissions and other indicators are constructed to evaluate the comprehensive benefits of optimal operation. Secondly, based on the system carbon emission information, a carbon flow topology model based on energy flow interaction is constructed, and the carbon flow information is used to assist in evaluating the multi-objective optimization results. Finally, a practical regional system in Northeast China is simulated to study the collaborative interaction characteristics of source-load-storage, analyze the optimization effect of hydrogen energy flow and generalized energy storage on the comprehensive benefits of the system. [Results] The simulation results show that the participation of hydrogen energy flow and generalized energy storage can effectively improve the consumption margin of heterogeneous energy flow system for renewable energy, which proves the effectiveness and feasibility of the proposed method. [Conclusions] Through the flexible interaction of electricity-heat-hydrogen energy flow, the full utilization of energy is realized, the dynamic adjustment ability of the system is enhanced, and the penetration of low-carbon energy is effectively promoted. After considering the generalized energy storage, it further promotes the consumption of low-carbon energy, realizes peak shaving and valley filling, and promotes the transformation of heterogeneous energy flow system to efficient, clean and low-carbon. Through the analysis of carbon flow in typical periods, it is shown that the participation of hydrogen energy flow and generalized energy storage can effectively alleviate the pressure of system supply and demand, which is conducive to the realization of low-carbon operation of heterogeneous energy flow system. The strategy of this paper provides new ideas and methods for heterogeneous energy flow systems to absorb renewable energy, and has good engineering prospects.

关键词

氢能流 / 广义储能 / 异质能流系统 / 碳流 / 低碳运行

Key words

hydrogen energy flow / generalized energy storage / heterogeneous energy flow system / carbon flow / low-carbon operation

引用本文

导出引用
马成廉, 李浩, 魏刚, 兰冰, 赵宇, 孙黎. 考虑氢能流与广义储能的异质能流系统低碳优化运行[J]. 电力建设. 0
MA Chenglian, LI Hao, WEI Gang, LAN Bing, ZHAO Yu, SUN Li. Low-carbon Optimal Operation of Heterogeneous Energy Flow System Considering Hydrogen Energy Flow and Generalized Energy Storage[J]. Electric Power Construction. 0
中图分类号: TM732   

参考文献

[1] 舒印彪, 赵勇, 赵良, 等. “双碳” 目标下我国能源电力低碳转型路径[J]. 中国电机工程学报, 2023, 43(5): 1663-1672.
SHU Yinbiao, ZHAO Yong, ZHAO Liang, et al.Study on low carbon energy transition path toward carbon peak and carbon neutrality[J]. Proceedings of the CSEE, 2023, 43(5): 1663-1672.
[2] 马成廉, 赵宇, 宋萌清, 等. 基于新能源发电品质量化与负荷时序匹配的功率品质划分模型研究[J]. 东北电力大学学报, 2024, 44(2): 42-50, 78.
MA Chenglian, ZHAO Yu, SONG Mengqing, et al.Research on power quality segmentation model based on new energy power generation quality quantification and load timing matching[J]. Journal of Northeast Electric Power University, 2024, 44(2): 42-50, 78.
[3] 张婷, 马裕泽, 乌云娜. “双碳” 目标下共享储能多场景递进规划优化[J]. 电力建设, 2025, 46(1): 134-146.
ZHANG Ting, MA Yuze, WU Yunna.Multi-scenario progressive planning optimization of shared energy storage under dual-carbon goals[J]. Electric Power Construction, 2025, 46(1): 134-146.
[4] 胥栋, 李逸超, 李赟, 等. 基于深度强化学习的多能流楼宇低碳调度方法[J]. 浙江电力, 2024, 43(2): 126-136.
XU Dong, LI Yichao, LI Yun, et al.A low-carbon scheduling method for multi-energy flow buildings based on deep reinforcement learning[J]. Zhejiang Electric Power, 2024, 43(2): 126-136.
[5] 和萍, 刘鑫, 宫智杰, 等. 高比例可再生能源电力系统源荷储联合调峰分层优化运行[J]. 电力系统保护与控制, 2024, 52(18): 112-122.
HE Ping, LIU Xin, GONG Zhijie, et al.Hierarchical optimization operation model for joint peak-load regulation of source-load-storage in a high proportion of renewable energy power system[J]. Power System Protection and Control, 2024, 52(18): 112-122.
[6] 王永利, 向皓, 郭璐, 等. 面向多能互补的分布式光伏与电氢混合储能规划优化研究[J]. 电网技术, 2024, 48(2): 564-576.
WANG Yongli, XIANG Hao, GUO Lu, et al.Research on planning optimization of distributed photovoltaic and electro-hydrogen hybrid energy storage for multi-energy complementarity[J]. Power System Technology, 2024, 48(2): 564-576.
[7] 徐奇锋, 王激华, 乔松博, 等. 考虑源-荷匹配的区域电网风光储容量规划-运行联合优化方法[J]. 电力建设, 2024, 45(8): 85-96.
XU Qifeng, WANG Jihua, QIAO Songbo, et al.Planning and operation joint optimization method for wind, solar, and energy storage capacity in regional power grids considering source load matching[J]. Electric Power Construction, 2024, 45(8): 85-96.
[8] 俞晓荣, 徐青山, 杜璞良, 等. 融合注意力机制与SAC算法的虚拟电厂多能流低碳调度[J]. 电力工程技术, 2024, 43(5): 233-246.
YU Xiaorong, XU Qingshan, DU Puliang, et al.Optimizing multi-energy fow scheduling of hydrogen-inclusive virtual power plants based on deep reinforcement learning under dual-carbon targets[J]. Electric Power Engineering Technology, 2024, 43(5): 233-246.
[9] 张树森, 段慧芹, 周傲, 等. 基于能流耦合机理的热电耦合综合能源系统潮流分析及对比[J]. 电网与清洁能源, 2024, 40(4): 65-73, 83.
ZHANG Shusen, DUAN Huiqin, ZHOU Ao, et al.Power flow analysis and comparison of thermoelectric coupling integrated energy system based on energy flow coupling mechanism[J]. Power System and Clean Energy, 2024, 40(4): 65-73, 83.
[10] 李明佳, 郭嘉琪, 马腾, 等. “源-网-荷-储” 式异质能流复合供能系统的研究现状及发展趋势[J]. 科学通报, 2023, 68(15): 1941-1958.
LI Mingjia, GUO Jiaqi, MA Teng, et al.Research status and development trend of generation-grid-loadstorage type integrated systems with heterogeneous energy flows[J]. Chinese Science Bulletin, 2023, 68(15): 1941-1958.
[11] 阮涛, 朱三立, 葛辉, 等. 考虑供需平衡度的能源枢纽定址配容交替优化方法[J]. 浙江电力, 2024, 43(9): 29-38.
RUAN Tao, ZHU Sanli, GE Hui, et al.An alternate optimization method for energy hub siting and sizing considering supply-demand balance[J]. Zhejiang Electric Power, 2024, 43(9): 29-38.
[12] 黎静华, 朱梦姝, 陆悦江, 等. 综合能源系统优化调度综述[J]. 电网技术, 2021, 45(6): 2256-2272.
LI Jinghua, ZHU Mengshu, LU Yuejiang, et al.Review on optimal scheduling of integrated energy systems[J]. Power System Technology, 2021, 45(6): 2256-2272.
[13] 潘超, 郭晨雨, 刘继哲, 等. 电-氢混合储能参与的多能系统低碳优化[J]. 电网与清洁能源, 2024, 40(2): 21-29.
PAN Chao, GUO Chenyu, LIU Jizhe, et al.A study on low-carbon optimization of the multi-energy system with electricity-hydrogen hybrid energy storage participation[J]. Power System and Clean Energy, 2024, 40(2): 21-29.
[14] 国家发展改革委, 国家能源局. 关于完善能源绿色低碳转型体制机制和政策措施的意见[EB/OL].[2022-01-30]. https://www.gov.cn/zhengce/zhengceku/2022-02/11/content_5673015.htm.
[15] 夏佳伟, 张一帆, 雷浩, 等. 考虑高效氢能利用和碳捕集的综合能源系统低碳优化调度[J]. 电力建设, 2024, 45(12): 100-111.
XIA Jiawei, ZHANG Yifan, LEI Hao, et al.Low-carbon economic dispatch of integrated energy system considering efficient hydrogen utilization and carbon capture equipment[J]. Electric Power Construction, 2024, 45(12): 100-111.
[16] 韩子娇, 那广宇, 董鹤楠, 等. 考虑灵活性供需平衡的含电转氢综合能源系统鲁棒优化调度[J]. 电力系统保护与控制, 2023, 51(6): 161-169.
HAN Zijiao, NA Guangyu, DONG Henan, et al.Robust optimal operation of integrated energy system with P2H considering flexibility balance[J]. Power System Protection and Control, 2023, 51(6): 161-169.
[17] UTOMO O, ABEYSEKERA M, UGALDE-LOO C E. Optimal operation of a hydrogen storage and fuel cell coupled integrated energy system[J]. Sustainability, 2021, 13(6): 3525.
[18] 董晓晶, 刘洪, 宫建锋, 等. 考虑多类型综合需求响应的电热耦合能源系统可靠性评估[J]. 电力建设, 2018, 39(11): 10-19.
DONG Xiaojing, LIU Hong, GONG Jianfeng, et al.Reliability assessment of coupled electricity-heat energy system considering multi-type integrated demand response[J]. Electric Power Construction, 2018, 39(11): 10-19.
[19] 李天格, 胡志坚, 陈志, 等. 计及电-气-热-氢需求响应的综合能源系统多时间尺度低碳运行优化策略[J]. 电力自动化设备, 2023, 43(1): 16-24.
LI Tiange, HU Zhijian, CHEN Zhi, et al.Multi-time scale low-carbon operation optimization strategy of integrated energy system considering electricity-gas-heat-hydrogen demand response[J]. Electric Power Automation Equipment, 2023, 43(1): 16-24.
[20] 钟雅珊, 付聪, 钱峰, 等. 考虑广义储能和条件风险价值的综合能源系统经济调度[J]. 电力系统保护与控制, 2022, 50(9): 54-63.
ZHONG Yashan, FU Cong, QIAN Feng, et al.Economic dispatch model of an integrated energy system considering generalized energy storage and conditional value at risk[J]. Power System Protection and Control, 2022, 50(9): 54-63.
[21] 宋梦, 林固静, 高赐威, 等. 考虑多重不确定性的广义共享储能优化配置方法[J/OL]. 电工技术学报, 1-18[2024-10-23]. https://doi.org/10.19595/j.cnki.1000-6753.tces.240248.
SONG Meng, LIN Gujing, GAO Ciwei, et al. A generalized shared energy storage optimization configuration method considering multiple uncertainties[J/OL]. Transactions of China Electrotechnical Society, 1-18[2024-10-23]. https://doi.org/10.19595/j.cnki.1000-6753.tces.240248.
[22] 于建平, 余一平, 许剑冰, 等. 基于自适应准谐振控制的储能抑制广义强迫振荡传播方法[J]. 电力系统保护与控制, 2024, 52(5): 128-138.
YU Jianping, YU Yiping, XU Jianbing, et al.Energy storage suppression method of generalized forced oscillation propagation based on adaptive quasi-resonant control[J]. Power System Protection and Control, 2024, 52(5): 128-138.
[23] 肖碧涛, 刘元, 叶雨润, 等. 考虑广义储能参与灵活响应的光储氢集站实时能量管理策略[J]. 电力自动化设备, 2024, 44(10): 53-61.
XIAO Bitao, LIU Yuan, YE Yurun, et al.Real-time energy management strategy of photovoltaic-energy storage-hydrogen production integrated system considering generalized energy storage participating in flexible response[J]. Electric Power Automation Equipment, 2024, 44(10): 53-61.
[24] 李宏仲, 房宇娇, 肖宝辉. 考虑广义储能的区域综合能源系统优化运行研究[J]. 电网技术, 2019, 43(9): 3130-3138.
LI Hongzhong, FANG Yujiao, XIAO Baohui.Research on optimized operation of regional integrated energy system considering generalized energy storage[J]. Power System Technology, 2019, 43(9): 3130-3138.
[25] 刘效辰, 刘晓华, 张涛, 等. 建筑区域广义储能资源的刻画与设计方法[J]. 中国电机工程学报, 2024, 44(6): 2171-2185.
LIU Xiaochen, LIU Xiaohua, ZHANG Tao, et al.Characterization and design method of generalized energy storage resources in or around buildings[J]. Proceedings of the CSEE, 2024, 44(6): 2171-2185.
[26] 张晓, 陈胜, 卫志农, 等. 计及广义储能的园区综合能源系统低碳规划[J]. 电力自动化设备, 2024, 44(3): 40-48.
ZHANG Xiao, CHEN Sheng, WEI Zhinong, et al.Low-carbon planning of park-level integrated energy system considering generalized energy storage[J]. Electric Power Automation Equipment, 2024, 44(3): 40-48.
[27] 高赐威, 王崴, 陈涛. 基于可逆固体氧化物电池的电氢一体化能源站容量规划[J]. 中国电机工程学报, 2022, 42(17): 6155-6170.
GAO Ciwei, WANG Wei, CHEN Tao.Capacity planning of electric-hydrogen integrated energy station based on reversible solid oxide battery[J]. Proceedings of the CSEE, 2022, 42(17): 6155-6170.
[28] 骆钊, 王菁慧, 王华, 等. 考虑碳捕集和电转气的综合能源系统优化调度[J]. 电力自动化设备, 2023, 43(12): 127-134.
LUO Zhao, WANG Jinghui, WANG Hua, et al.Optimal scheduling of integrated energy system considering carbon capture and power-to-gas[J]. Electric Power Automation Equipment, 2023, 43(12): 127-134.
[29] 梁俊鹏, 张高航, 李凤婷, 等. 计及氢储能-制氨-碳捕集的综合能源系统低碳优化调度[J]. 电力自动化设备, 2024, 44(10): 16-23.
LIANG Junpeng, ZHANG Gaohang, LI Fengting, et al.Low-carbon optimal scheduling of integrated energy system considering hydrogen energy storage, ammonia production and carbon capture[J]. Electric Power Automation Equipment, 2024, 44(10): 16-23.
[30] 徐加银, 汪涛, 王加庆, 等. 考虑微电网灵活性资源属性的配电网规划方法[J]. 电力建设, 2022, 43(6): 84-92.
XU Jiayin, WANG Tao, WANG Jiaqing, et al.Distribution network planning method considering flexibility resource attribute of microgrids[J]. Electric Power Construction, 2022, 43(6): 84-92.
[31] 陈锦鹏, 胡志坚, 陈颖光, 等. 考虑阶梯式碳交易机制与电制氢的综合能源系统热电优化[J]. 电力自动化设备, 2021, 41(9): 48-55.
CHEN Jinpeng, HU Zhijian, CHEN Yingguang, et al.Thermoelectric optimization of integrated energy system considering ladder-type carbon trading mechanism and electric hydrogen production[J]. Electric Power Automation Equipment, 2021, 41(9): 48-55.
[32] CHENG Y H, ZHANG N, WANG Y, et al.Modeling carbon emission flow in multiple energy systems[J]. IEEE Transactions on Smart Grid, 2019, 10(4): 3562-3574.
[33] 孙国强, 王文学, 吴奕, 等. 辐射型电-热互联综合能源系统快速潮流计算方法[J]. 中国电机工程学报, 2020, 40(13): 4131-4142.
SUN Guoqiang, WANG Wenxue, WU Yi, et al.Fast power flow calculation method for radiant electric-thermal interconnected integrated energy system[J]. Proceedings of the CSEE, 2020, 40(13): 4131-4142.
[34] 薛屹洵, 杜源, 王科, 等. 计及热网拓扑重构的电-热分布式机组组合研究[J/OL]. 中国电机工程学报, 1-11[2025-03-18]. https://doi.org/10.13334/j.0258-8013.pcsee.232504.
XUE Yixun, DU Yuan, WANG Ke, et al. Distributed unit commitment for integrated electric and heating system considering reconfiguration of district heating network[J/OL]. Proceedings of the CSEE, 1-11[2025-03-18]. https://doi.org/10.13334/j.0258-8013.pcsee.232504.
[35] 郭静蓉, 向月, 吴佳婕, 等. 考虑CCUS电转气技术及碳市场风险的电-气综合能源系统低碳调度[J]. 中国电机工程学报, 2023, 43(4): 1290-1303.
GUO Jingrong, XIANG Yue, WU Jiajie, et al.Low-carbon optimal scheduling of integrated electricity-gas energy systems considering CCUS-P2G technology and risk of carbon market[J]. Proceedings of the CSEE, 2023, 43(4): 1290-1303.
[36] CHENG Y H, ZHANG N, ZHANG B S, et al.Low-carbon operation of multiple energy systems based on energy-carbon integrated prices[J]. IEEE Transactions on Smart Grid, 2020, 11(2): 1307-1318.
[37] 刁涵彬, 李培强, 王继飞, 等. 考虑电/热储能互补协调的综合能源系统优化调度[J]. 电工技术学报, 2020, 35(21): 4532-4543.
DIAO Hanbin, LI Peiqiang, WANG Jifei, et al.Optimal dispatch of integrated energy system considering complementary coordination of electric/thermal energy storage[J]. Transactions of China Electrotechnical Society, 2020, 35(21): 4532-4543.
[38] 李轶, 朱亚萍, 王昕. 考虑电动汽车出行规律的虚拟电厂鲁棒优化调度[J]. 电气工程学报, 2024, 19(2): 307-315.
LI Yi, ZHU Yaping, WANG Xin.Robust optimal scheduling of virtual power plants considering travel rules of electric vehicles[J]. Journal of Electrical Engineering, 2024, 19(2): 307-315.

基金

国家自然科学基金项目(52477178)

PDF(1624 KB)

Accesses

Citation

Detail

段落导航
相关文章
AI小编
你好!我是《电力建设》AI小编,有什么可以帮您的吗?

/