[Objective] DC power transmission technology plays a crucial role in the construction of new energy power systems. To expand novel or unexplored applications of DC power transmission, we need a deeper understanding and more comprehensive analysis of its underlying physical characteristics than ever before. [Methods] Based on fundamental physical principles, the inherent characteristics of DC power transmission systems can be summarized in five aspects: frequency isolation effect, fault current isolation effect, unlimited transmission distance, significantly enhanced power transmission capability, and absence of distributed capacitive current. Building on these inherent physical characteristics, the existing DC power transmission application modes have been established. [Results] Established the correspondence between the inherent physical characteristics of DC transmission and various existing application modes, providing a pathway for expanding DC technology applications in the context of new energy power systems. [Conclusions] The inherent physical characteristics of DC and AC transmission technologies have a complementary relationship. Applying DC transmission technology strategically within AC power grids can significantly enhance the operational performance of power systems. Future power systems will feature AC and DC organically integrated across all voltage levels.
XU Zheng.
Overview of Basic Characteristics and Application Modes of DC Power Transmission[J]. Electric Power Construction. 0
中图分类号:
TM72
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 徐政, 张哲任, 肖晃庆. 基于子模块级联型换流器的柔性输电系统[M]. 北京:机械工业出版社,2025: 1-2. XU Zheng, ZHANG Zheren, XIAO Huangqing.Flexible power transmission systems based on cascaded submodule converters [M]. Beijing: China Machine Press, 2025: 1-2. [2] ADAMSON C, HINGORANI N G.High voltage direct current power transmission[M]. London: Garraway Limited, 1960. [3] KIMBARK E W.Direct current transmission[M]. New York: Wiley-Interscience, 1971. [4] UHLMANN E.Power transmission by direct current[M]. Berlin: Springer, 1975. [5] 浙江大学直流输电科研组. 直流输电[M]. 北京:电力工业出版社, 1982. HVDC Research Group of Zhejiang University. HVDC transmission[M]. Beijing: Electric Power Press, 1982. [6] ARRILAGA J.High voltage direct current transmission [M]. England: IET Press, 1998. [7] 徐政. 超、特高压交流输电系统的输送能力分析[J]. 电网技术, 1995, 19(8): 7-12. XU Zheng.EHV/UHV AC transmission capability analysis[J]. Power System Technology, 1995, 19(8): 7-12. [8] 徐政. 交直流电力系统动态行为分析[M]. 北京: 机械工业出版社, 2004: 2-7. [9] 刘振亚, 舒印彪, 张文亮, 等. 直流输电系统电压等级序列研究[J]. 中国电机工程学报, 2008, 28(10): 1-8. LIU Zhenya, SHU Yinbiao, ZHANG Wenliang, et al.Study on voltage class series for HVDC transmission system[J]. Proceedings of the CSEE, 2008, 28(10): 1-8. [10] 徐政, 程斌杰. 不同电压等级直流输电的适用性研究[J]. 电力建设, 2015, 36(9): 22-29. XU Zheng, CHENG Binjie.Applicability study on DC transmission with different voltage levels[J]. Electric Power Construction, 2015, 36(9): 22-29. [11] 安婷, 乐波, 杨鹏, 等. 直流电网直流电压等级确定方法[J]. 中国电机工程学报, 2016, 36(11): 2871-2879. AN Ting, YUE Bo, YANG Peng, et al.A determination method of DC voltage levels for DC grids[J]. Proceedings of the CSEE, 2016, 36(11): 2871-2879. [12] 蔡蓉, 张立波, 程濛, 等. 66 kV海上风电交流集电方案技术经济性研究[J]. 全球能源互联网, 2019, 2(2): 155-162. CAI Rong, ZHANG Libo, CHENG Meng, et al.Technical and economic research on 66 kV offshore wind power AC collection solution[J]. Journal of Global Energy Interconnection, 2019, 2(2): 155-162. [13] 徐政, 张哲任. 低频输电技术原理之一: M3C的数学模型与等效电路[J]. 浙江电力, 2021, 40(10): 13-21. XU Zheng, ZHANG Zheren.Principles of low frequency power transmission technology: part 1-mathematical model and equivalent circuit of M3C[J]. Zhejiang Electric Power, 2021, 40(10): 13-21. [14] 徐政, 张哲任. 低频输电技术原理之二: M3C的稳态特性与主回路参数设计[J]. 浙江电力, 2021, 40(10): 22-29. XU Zheng, ZHANG Zheren.Principles of low frequency power transmission technology: part 2-the steady-state characteristics of M3C and the design of main circuit parameters[J]. Zhejiang Electric Power, 2021, 40(10): 22-29. [15] 徐政, 张哲任. 低频输电技术原理之三: M3C基本控制策略与子模块电压平衡控制[J]. 浙江电力, 2021, 40(10): 30-41. XU Zheng, ZHANG Zheren.Principles of low frequency power transmission technology: part 3-basic control strategy for the M3C and sub-module voltage balance control[J]. Zhejiang Electric Power, 2021, 40(10): 30-41. [16] 黄小卫, 李晓骏, 左干清. 国内外海底电缆工程现状及展望[J]. 电线电缆, 2023(1): 1-6. HUANG Xiaowei, LI Xiaojun, ZUO Ganqing.Application status and prospect of submarine cable projects at home and abroad[J]. Wire & Cable, 2023(1): 1-6. [17] CLARK H, WOODFORD D.Segmentation of the power system with DC links[C]//IEEE HVDC-FACTS Subcommittee Meeting. IEEE, 2006. [18] MOUSAVI O A, SANJARI M J, CHERKAOUI, et al. Power system segmentation using DC links to decrease the risk of cascading blackouts[C]//IEEE Trondheim PowerTech. New York: IEEE, 2011. [19] LOEHR G C.Is it time to cut the ties that bind?[J]. Transmission & Distribution World: The Information Leader Serving the Worldwide Power-Delivery Industry, 2004(3): 56. [20] LOEHR G C.Enhancing the grid, smaller can be better[J]. Energybiz Magazine, 2007(1): 35-36. [21] CARLSSON L.HVDC: a “firewall” against disturbances in high-voltage grids[J]. ABB Review, 2005(3): 42-46. [22] CLARK H, EDRIS A A, EL-GASSEIR M, et al.Softening the blow of disturbances[J]. IEEE Power and Energy Magazine, 2008, 6(1): 30-41. [23] CLARK H K, EL-GASSEIR M M, KENNETH EPP H D, et al. The application of segmentation and grid shock absorber concept for reliable power grids[C]//2008 12th International Middle-East Power System Conference. IEEE, 2008: 34-38. [24] 徐政, 唐庚, 黄弘扬, 等. 消解多直流馈入问题的两种新技术[J]. 南方电网技术, 2013, 7(1): 6-14. XU Zheng, TANG Geng, HUANG Hongyang, et al.Two new technologies for eliminating the problems with multiple HVDC infeeds[J]. Southern Power System Technology, 2013, 7(1): 6-14. [25] CHENG B J, XU Z, XU W.Optimal DC-segmentation for multi-infeed HVDC systems based on stability performance[J]. IEEE Transactions on Power Systems, 2016, 31(3): 2445-2454. [26] BOLA J, RIVAS R, FERNÁNDEZ R,et al. Operational experience of new Spain-France HVDC interconnection[C]// Proceedings of CIGRE. Paris, France: CIGRE, 2016. [27] CORONADO L, LONGAS C, RIVAS R, et al.INELFE: main description and operational experience over three years in service[C]//2019 AEIT HVDC International Conference (AEIT HVDC). IEEE, 2019: 1-6. [28] 彭发喜, 黄伟煌, 许树楷, 等. 柔性直流输电系统异同步自动控制策略[J]. 南方电网技术, 2023, 17(3): 20-26. PENG Faxi, HUANG Weihuang, XU Shukai, et al.Asynchronous automatic control strategy for MMC-HVDC system[J]. Southern Power System Technology, 2023, 17(3): 20-26. [29] 王之伟, 黄俊辉, 程亮, 等. “嵌入式” 直流技术在省级输电网中的规划及应用[J]. 电力工程技术, 2022, 41(6): 65-74. WANG Zhiwei, HUANG Junhui, CHENG Liang, et al.Planning and application of embedded DC transmission technology in the provincial transmission power grid[J]. Electric Power Engineering Technology, 2022, 41(6): 65-74. [30] 周叶, 郝思鹏, 戚无限.基于AHP-EWM组合赋权法的扬镇交改直长江大跨越导线选型研究[J/OL]. 自动化技术与应用, 2024.(2024-12-30)[2025-06-10]. https://link.cnki.net/urlid/23.1474.TP.20241227.1924.190. ZHOU Ye, HAO Sipeng, QI Wuxian.Research on the selection of traverse lines for Yangzhen crossing and straight Yangtze river crossing based on AHP-EWM combination weighting method[J/OL]. Techniques of Automation and Applications, 2024.(2024-12-30)[2025-06-10]. https://link.cnki.net/urlid/23.1474.TP.20241227.1924.190. [31] 徐政, 陈海荣. 电压源换流器型直流输电技术综述[J]. 高电压技术, 2007, 33(1): 1-10. XU Zheng, CHEN Hairong.Review and applications of VSC HVDC[J]. High Voltage Engineering, 2007, 33(1): 1-10. [32] OOI B T, WANG X.Boost-type PWM HVDC transmission system[J]. IEEE Transactions on Power Delivery, 1991, 6(4): 1557-1563. [33] OOI B T, WANG X.Voltage angle lock loop control of the boost type PWM converter for HVDC application[J]. IEEE Transactions on Power Electronics, 1990, 5(2): 229-235. [34] ASPLUND G, ERIKSSON K, SVENSSON K.HVDC light-DC transmission based on voltage sourced converters[J]. ABB Reviews, 1998(1): 4-9. [35] GEMMELL B, DORN J, RETZMANN D, et al.Prospects of multilevel VSC technologies for power transmission[C]//2008 IEEE/PES Transmission and Distribution Conference and Exposition. IEEE, 2008: 1-16. [36] WESTERWELLER T, FRIEDRICH K, ARMONIES U, et al.Trans bay cable world's first HVDC system using multilevel voltage sourced converter[C]// Proceedings of CIGRE. Paris, France: CIGRE, 2010: 1-7. [37] TU Q R, XU Z.Impact of sampling frequency on harmonic distortion for modular multilevel converter[J]. IEEE Transactions on Power Delivery, 2011, 26(1): 298-306.