电碳耦合环境下考虑水电调节能力的区域电网风光容量优化配置

赵义深, 钟浩, 杜涛, 李迅, 王振, 欧阳臻辉

电力建设 ›› 0

PDF(617 KB)
PDF(617 KB)
电力建设 ›› 0

电碳耦合环境下考虑水电调节能力的区域电网风光容量优化配置

  • 赵义深1,2, 钟浩1,2, 杜涛1,2, 李迅1,2, 王振1,2, 欧阳臻辉1,2
作者信息 +

Optimal Allocation of Wind and Solar Capacity in Regional Power Grids Considering Hydropower Regulation Capability Under Electricity-Carbon Coupling Environment

  • ZHAO Yishen1,2, ZHONG Hao1,2, DU Tao1,2, LI Xun1,2, WANG Zhen1,2, OUYANG Zhenhui1,2
Author information +
文章历史 +

摘要

【目的】 针对当前大规模风电与光伏电站投资中普遍存在的上网受限、投资回报率偏低及碳市场激励机制缺失等问题,在电碳耦合环境下,构建了一种考虑水电调节能力的区域电网风光容量双层优化配置模型。【方法】 上层模型以风电与光伏的投资回报率最大为优化目标,在综合考虑电力市场与碳市场收益的基础上,制定风光容量配置策略;下层模型中,小水电、风电与光伏组成的可再生能源群体以购电成本最小化为目标参与电力市场出清,同时考虑风光在核证自愿减排量(China certified emission reduction,CCER)市场中的碳交易结果,实现电力与碳市场的联合优化出清,模型引入合作博弈与夏普利值,量化风光水各自收益,并采用改进粒子群优化算法(improved particle swarm optimization,IPSO)嵌套CPLEX求解器实现双层结构的协同求解。【结果】 仿真结果表明,不同水文场景下,风光的收益随水电调节能力的变化而变化,丰水期收益最大,枯水期则相应减少,进而影响风光全年的最优配置。引入电碳耦合市场模式后,风光系统收益显著提升,配置容量比传统电力市场模式增长约24%;碳市场机制通过价格信号有效抑制了高碳排放机组的运行行为,促进了火电机组碳排放结构的优化。CCER市场摩擦因素对碳收益存在显著削弱效应,收益最高可下降33.5%。【结论】 模型突出了水电调节能力和碳市场信号对风光消纳的关键作用,有助于新能源开发和电源结构低碳化,为碳市场政策优化提供了理论依据。

Abstract

[Objective] In view of the problems of limited access to the Internet, low return on investment and lack of incentive mechanism in the carbon market in the current large-scale wind power and photovoltaic power station investment. In this paper, a bi-level optimal configuration model of wind and solar capacity of regional power grid considering hydropower regulation ability is constructed under the environment of electric carbon coupling. [Methods] The upper model takes the maximum return on investment of wind power and photovoltaic as the optimization goal, and formulates the configuration strategy of wind and photovoltaic capacity on the basis of comprehensive consideration of the benefits of electricity market and carbon market. In the lower model, the renewable energy group composed of small hydropower, wind power and photovoltaic participates in the clearing of the electricity market with the goal of minimizing the cost of purchasing electricity. At the same time, considering the carbon trading results of wind and solar in the China certified emission reduction (CCER) market, the joint optimization clearing of the electricity and carbon markets is realized. The model introduces cooperative game and Shapley value to quantify the respective benefits of wind, solar and water, and uses the improved particle swarm optimization (IPSO) nested CPLEX solver to realize the collaborative solution of the two-layer structure. [Results] The simulation results show that under different typical scenarios, the income of the scenery varies with the change of the hydropower regulation capacity. The income is the largest in the wet season, and the dry season is reduced accordingly, which in turn affects the optimal configuration of the scenery throughout the year. After the introduction of the electricity-carbon coupling market model, the revenue of the wind-solar system is significantly improved, and the configuration capacity is about 24% higher than that of the traditional electricity market model. The carbon market mechanism effectively inhibits the operation behavior of high-carbon emission units through price signals and promotes the optimization of carbon emission structure of thermal power units. The CCER market friction factor has a significant weakening effect on carbon returns, and the return can be reduced by up to 33.5%. [Conclusions] The model highlights the key role of hydropower regulation capacity and carbon market signal in wind and solar consumption, which is helpful for new energy development and low carbonization of power structure, and provides a theoretical basis for the optimization of carbon market policy.

引用本文

导出引用
赵义深, 钟浩, 杜涛, 李迅, 王振, 欧阳臻辉. 电碳耦合环境下考虑水电调节能力的区域电网风光容量优化配置[J]. 电力建设. 0
ZHAO Yishen, ZHONG Hao, DU Tao, LI Xun, WANG Zhen, OUYANG Zhenhui. Optimal Allocation of Wind and Solar Capacity in Regional Power Grids Considering Hydropower Regulation Capability Under Electricity-Carbon Coupling Environment[J]. Electric Power Construction. 0
中图分类号: TM622   

参考文献

[1] 张宪文,殷高文,沈非凡,等. 计及风电不确定性及碳交易的储能参与电力市场竞价策略[J]. 上海交通大学学报, 2024, 58(12): 1868-1880.
ZHANG Xianwen, YIN Gaowen, SHEN Feifan, et al.Bidding Strategies for Energy Storage Participation in Electricity Market Considering Uncertainty of Wind Power and Carbon Trading[J]. JOURNAL OF SHANGHAI JIAO TONG UNIVERSITY, 2024, 58(12): 1868-1880.
[2] 徐奇锋,王激华,乔松博,等. 考虑源-荷匹配的区域电网风光储容量规划-运行联合优化方法[J]. 电力建设, 2024, 45(08): 85-96.
Xu Qifeng, WANG Jihua, QIAO Songbo, et al.Planning and Operation Joint Optimization Method for Wind, Solar, and Energy Storage Capacity in Regional Power Grids Considering Source Load Matching[J]. Electric Power Construction, 2024, 45(08): 85-96.
[3] 黄梦旗,李勇汇,杨军,等. 含风光储岸电供电系统的分布鲁棒优化运行策略[J]. 浙江电力,2024, 43(09): 1-9.
HUANG Mengqi, LI Yonghui, YANG Jun, et al.An operating strategy for wind-solar-storage hybrid shore power supply systems based on distributionally robust optimization[J]. Zhejiang Electric Power, 2024, 43(09): 1-9.
[4] 范宏,李婷,严嘉鑫,等. 基于按需比例分配机制的风光火氢多时间尺度协同规划[J]. 电力工程技术, 2024, 43(02): 33-43.
FAN Hong, LI Ting, YAN Jiaxin, et al.Multi-timescale Coordinated Planning for wind-photovoltaic-thermal-hydrogen based on a demand proportional allocation mechanism[J]. Electric Power Engineering Technology, 2024, 43(02): 33-43.
[5] 乔立,黄梓欣,章谋成,等. 计及风光相位特性和机-网间元件的短路电流计算方法[J].电力工程技术,2023,42(02): 241-249.
QIAO Li, HUANG Zixin, ZHANG Moucheng, et al.A short-circuit current calculation method considering phase characteristics of wind power and photovoltaic and components between new energy units and grid[J]. Technology, 2023, 42(02): 241-249.
[6] 王心昊,蒋艺璇,陈启鑫,等. 可交易减排价值权证比较分析和衔接机制研究[J]. 电网技术, 2023, 47(02): 594-603.
WANG Xinhao, JIANG Yixuan, CHEN Qixin, et al.On Tradeable Certificates of Emissions Reduction and Their Interactions[J]. Power System Technology, 2023, 47(02): 594-603.
[7] 平悦,单永娟,李诚. 碳中和目标下风电消纳量的影响因素分析[J]. 太阳能学报, 2022, 43(11): 235-241.
Ping Yue, Shan Yongjuan, Li Cheng.ANALYSIS OF INFLUENCING FACTORS OF WIND POWER UTILIZATION UNDER CARBON NEUTRAL TARGET[J]. ACTA ENERGIAE SOLARIS SINICA, 2022, 43(2): 235-241.
[8] 赵麟,李亚鹏,靳晓雨,等. 考虑CCER机制的碳-电耦合市场水火电协同竞价模型[J]. 电力系统自动化, 2023, 47(21): 12-24.
ZHAO Lin, LI Yapeng, JIN Xiaoyu, et al.Coordinated Bidding Model of Hydro-Thermal Power in Carbon-Electricity Coupled Market Considering Chinese Certified Emission Reduction Mechanism[J]. Automation of Electric Power Systems, 2023, 47(21): 12-24.
[9] 任大伟,肖晋宇,侯金鸣,等. 双碳目标下我国新型电力系统的构建与演变研究[J]. 电网技术, 2022, 46(10): 3831-3839.
REN Dawei, XIAO Jinyu, HOU Jinming, et al.Construction and Evolution of China’s New Power System Under Dual Carbon Goal[J]. Power System Technology, 2022, 46(10): 3831-3839.
[10] 肖白,张清佰,秦伟东,等. 考虑电碳耦合和灵活性供需平衡的源网荷储协同规划方法[J]. 电力建设, 2025, 46(03): 116-127.
XIAO Bai, ZHANG Qingbai, QIN Weidong, et al.Source-Grid-Load-Storage Synergistic Planning Considering Electricity Carbon Coupling and Flexible Supply-Demand Balance[J]. Electric Power Construction, 2025, 46(03): 116-127.
[11] 李晖,刘栋,姚丹阳. 面向碳达峰碳中和目标的我国电力系统发展研判[J]. 中国电机工程学报, 2021, 41(18): 6245-6259.
LI Hui, LIU Dong, YAO Danyang.Analysis and Reflection on the Development of Power System Towards the Goal of Carbon Emission Peak and Carbon Neutrality[J]. Proceedings of the CSEE, 2021, 41(18): 6245-6259.
[12] 刘奕辰,肖红谊,刘晓宏,等. 考虑绿证交易及碳排放约束的含风光储微网低碳优化调度[J]. 浙江电力, 2024, 43(08): 66-73.
LIU Yichen, XIAO Hongyi, LIU Xiaohong, et al.Low-carbon optimal scheduling for hybrid wind/PV/storage microgrids considering GEC trading and carbon emission constraints[J]. Zhejiang Electric Power, 2024, 43(08): 66-73.
[13] 李军徽,安晨宇,李翠萍,等. 计及调峰市场交易的储能-新能源-火电多目标优化调度[J]. 电工技术学报, 2023, 38(23): 6391-6406.
Li Junhui, An Chenyu, Li Cuiping, et al.Multi-Objective Optimization Scheduling Method Considering Peak Regulating Market Transactions for Energy Storage - New Energy - Thermal Power[J]. TRANSACTIONS OF CHINA ELECTROTECHNICAL SOCIETY, 2023, 38(23): 6391-6406.
[14] 杨策,孙伟卿,韩冬. 考虑新能源消纳能力的电力系统灵活性评估方法[J]. 电网技术, 2023, 47(01): 338-349.
YANG Ce, SUN Weiqing, HAN Dong.Power System Flexibility Evaluation Considering Renewable Energy Accommodation[J]. Power System Technology, 2023, 47(01): 338-349.
[15] 叶泽,李湘旗,姜飞,等. 考虑最优弃能率的风光火储联合系统分层优化经济调度[J]. 电网技术, 2021, 45(06): 2270-2280.
YE Ze, LI Xiangqi, JIANG Fei, et al.Hierarchical Optimization Economic Dispatching of Combined Wind-PV-thermal-energy Storage System Considering the Optimal Energy Abandonment Rate[J]. Power System Technology, 2021, 45(06): 2270-2280
[16] 马超,刘璐,练继建,等. 基于综合评价的混合抽蓄-风-光多能互补系统容量优化配置研究[J]. 水利学报, 2025, 56(06): 726-738.
MA Chao LIU Lu, LIAN Jijian, et al. Research on capacity design for Hybrid Pumped Storage-Wind-PV power system based on comprehensive evaluation[J]. SHUILI XUEBAO, 2025, 56(06): 726-738.
[17] 史昭娣,朱宁,李政,等. 基于分解协调的风光储联合规划分层优化方法[J]. 电力工程技术, 2023, 42(06): 22-31.
SHI Zhaodi, ZHU Ning, LI Zheng, et al.Joint planning and hierarchical optimization method of wind photovoltaic storage based on decomposition coordination[J]. 2023, 42(06): 22-31.
[18] 王磊,田旭,傅旭,等. 风光抽蓄互补系统合理容量效益研究[J]. 电网与清洁能源, 2023, 39(04): 111-117.
WANG Lei, TIAN Xu, FU Xu, et al.A Study on the Reasonable Capacity Benefit of the Wind Power-Photovoltaic Pumped Hydro Storage Complementary System[J]. Power System and Clean Energy, 2023, 39(04): 111-117.
[19] LI C H, WANG P, XUE W L, et al.Research on Cooperative Game and Benefits Allocation Strategies of Multi-energy Complementarity with New Energy and Thermal Power[C]//2022 IEEE 6th Conference on Energy Internet and Energy System Integration (EI2). IEEE, 2022: 298-302.
[20] 张尧翔,刘文颖,李潇,等. 高比例新能源接入电网光热发电-火电联合调峰优化控制方法[J]. 电力自动化设备, 2021, 41(04): 1-7+32.
ZHANG Yaoxiang, LIU Wenying, LI Xiao, et al. Optimal control method of peak load regulation combined concentrating solar power and thermal power for power grid accessed with high proportion of renewable energy[J]. Electric Power Automation Equipment, 2021, 41(04): 1-7 + 32.
[21] 钟浩,吴凡,张磊,等. 电力市场多时间尺度决策的抽蓄电站容量优化配置[J]. 高电压技术, 2023, 49(10): 4109-4119.
ZHONG Hao, WU Fan, ZHANG Lei, et al.Optimal Capacity Allocation of Pumping and Storage Power Station Based on Multi-time Scale Decision-making in Power Market[J]. High Voltage Engineering, 2023, 49(10): 4109-4119.
[22] 郭政麟,陈舒童,田嘉雯,等. 基于容量价值函数的综合能源系统多元资源协同配置[J/OL]. 中国电力.https://link.cnki.net/urlid/11.3265.tm.20250321.1405.004
GUO Zhenglin, CHEN Shutong, TIAN Jiawen, et al. Allocation of Multiple Resources in Integrated Energy System Based on Capacity Value Function[J/OL]. Electric Power.https://link.cnki.net/urlid/11.3265.tm.20250321.1405.004
[23] 刘凡,李凤婷,张高航,等. 计及循环寿命和运营策略的风电汇集区域储能电站优化配置[J]. 电力系统保护与控制, 2023, 51(08): 127-139.
LIU Fan, LI Fengting, ZHANG Gaohang, et al.Optimal configuration of storage power stations in a wind power gathering area considering cycle life and operation strategy[J]. Power System Protection and Control, 2023, 51(08): 127-139.
[24] 吴璐阳,辛洁晴,王承民.计入用户从众心理的分布式光伏装机容量预测[J]. 电力系统自动化, 2022, 46(14): 83-92.
WU Luyang, XIN Jieqing, WANG Chengmin.Installed Capacity Forecasting for Distributed Photovoltaic Considering Herd Mentality of Users[J]. Automation of Electric Power Systems, 2022, 46(14): 83-92.
[25] 赵振宇,解冰清. 计及风光互补特性的风光容量优化配置模型[J]. 太阳能学报, 2023, 44(08): 149-156.
Zhao Zhenyu, Xie Bingqing.OPTIMAL ALLOCATION MODEL OF WIND-SOLAR CAPACITY CONSIDERING WIND-SOLAR COMPLEMENTARY CHARACTERISTICS[J]. ACTA ENERGIAE SOLARIS SINICA, 2023, 44(08): 149-156.
[26] 韩培东,王伟胜,李湃,等.基于多目标优化的大型新能源基地风光储容量联合规划配置[J/OL].电网技术.https://doi.org/10.13335/j.1000-3673.pst.2024.2229
HAN Peidong, WANG Weisheng, LI Pai, et al.Joint Planning and Configuration of Wind-Solar-Storage Capacity for Large-Scale Renewable Energy Bases Based on Multi-Objective Optimization[J/OL]. Power System Technology.https://doi.org/10.13335/j.1000-3673.pst.2024.2229
[27] 端木陈睿,史林军,蹇德平,等. 计及多时间尺度的梯级水-风-光互补基地储能容量优化配置[J]. 电力自动化设备, 2024, 44(07): 173-179.
DUANMU Chenrui, SHI Linjun, JIAN Deping, et al.Optimization of energy storage capacity allocation in multi-time scales cascaded hydro-wind-solar base[J]. Electric Power Automation Equipment, 2024, 44(07): 173-179.
[28] 白庆立,赵志鹏,靳晓雨,等. 考虑风电出力和电价不确定性的水风联合现货市场竞价策略[J]. 电力系统自动化, 2024, 48(11): 122-133.
BAI Qingli, ZHAO Zhipeng, JIN Xiaoyu, et al.Hydro-Wind Power Joint Bidding Strategies for Electricity Spot Market Considering Uncertainties of Wind Power Output and Electricity Price[J]. Automation of Electric Power Systems, 2024, 48(11): 122-133.
[29] 张俊涛,程春田,曹辉,等. 巨型梯级水电站对电网新能源极端波动的防御能力分析方法[J]. 电力系统自动化, 2025, 49(04): 53-64.
ZHANG Juntao, CHENG Chuntian, CAO Hui, et al.Analytical Method for Defense Capability of Large-scale Cascade Hydropower Stations Against Extreme Fluctuations of Renewable Energy in Power Grid[J]. Automation of Electric Power Systems, 2025, 49(04): 53-64.
[30] 赵志鹏,于志辉,程春田,等. 水风光综合基地多风险量化及长期多目标协调优化调度方法[J]. 电力系统自动化, 2024, 48(22): 118-130.
ZHAO Zhipeng, YU Zhihui, CHENG Chuntian, et al.Multi-risk Quantification and Long-term Multi-objective Coordinative Optimal Dispatch Method for Hydro-Wind-Solar Integrated Energy Base[J]. Automation of Electric Power Systems, 2024, 48(22): 118-130.
[31] 周业荣,杨悦,马光文,等. 梯级水风光网源协同日内互补调度方法研究[J]. 电网与清洁能源, 2023, 39(12): 130-140+147.
ZHOU Yerong, YANG Yue, MA Guangwen, et al. Research on the Grid-Source Coordinated Intra-Day Complementary Dispatching Method of Hydro-Wind-Photovoltaic[J]. Power System and Clean Energy, 2023, 39(12): 130-140+147.
[32] 朱宏毅,杨昌海,沈渭程,等. 基于改进免疫蚁群算法的风光水火蓄多源互补优化调度[J]. 电网与清洁能源, 2023, 39(10): 129-136.
ZHU Hongyi, YANG Changhai, SHEN Weicheng, et al.A Study on the Multi-Source Complementary Optimized Scheduling of Wind Photovoltaic-Hydro-Thermal-Pumped Based on Improved Immune Ant Colony Algorithm[J]. Power System and Clean Energy, 2023, 39(10): 129-136.
[33] 唐雅洁,阎洁,李玉浩,等. 基于深度嵌入聚类的风光水典型联合出力场景提取[J]. 浙江电力, 2023, 42(04): 36-44.
TANG Yajie, YAN Jie, LI Yuhao, et al.Extraction of typical combined output scenarios of wind-solar-hydropower generation based on deep embedding clustering[J]. Zhejiang Electric Power, 2023, 42(04): 36-44.
[34] 张俊涛,程春田,申建建,等. 考虑风光不确定性的高比例可再生能源电网短期联合优化调度方法[J]. 中国电机工程学报, 2020, 40(18): 5921-5932.
ZHANG Juntao, CHENG Chuntian, SHEN Jianjian, et al.Short-term Joint Optimal Operation Method for High Proportion Renewable Energy Grid Considering Wind-solar Uncertainty[J]. Proceedings of the CSEE, 2020, 40(18): 5921-5932.
[35] B. B. Chakrabarti, B. Phillips, M. AL-Rawi, et al.Modelling of Firm Offer from Combined Wind and Hydro Generations[C]//2019 29th Australasian Universities Power Engineering Conference (AUPEC), IEEE, 2019: 1-6.
[36] LIU J J, YANG W J, LI X D, et al., A Short-Term Scheduling-Control Synergic Model of Hydropower Units for Hydro-Wind-Solar Complementary Operation[C]//2024 IEEE PES 16th Asia-Pacific Power and Energy Engineering Conference (APPEEC), IEEE, 2024: 1-5.
[37] 李咸善,胡家旗,张远航,等. 风光水储联合体多时间尺度市场化运营调度策略[J/OL]. 中国电机工程学报.https://link.cnki.net/urlid/11.2107.tm.20250228.1604.007
LI Xianshan, HU Jiaqi, ZHANG Yuanhang, et al. Optimal Scheduling Strategy for Joint Operation of Wind-Solar-Water-Storage Consortium Participating in Power Market Under Multiple Time Scales[J/OL]. Proceedings of the CSEE.https://link.cnki.net/urlid/11.2107.tm.20250228.1604.007
[38] 陈启鑫,刘学,房曦晨,等. 考虑可再生能源保障性消纳的电力市场出清机制[J].电力系统自动化, 2021, 45(06): 26-33.
CHEN Qixin, LIU Xue, FANG Xichen, et al.Electricity Market Clearing Mechanism Considering Guaranteed Accommodation of Renewable Energy[J]. Automation of Electric Power Systems, 2021, 45(06): 26-33.
[39] 叶宇剑,王卉宇,刘曦木,等. 电-碳耦合市场环境下可再生能源投资规划优化方法[J]. 电力系统自动化, 2023, 47(23): 92-104.
YE Yujian, WANG Huiyu, LIU Ximu, et al.Optimization Method for Renewable Energy Investment Planning Under Electricity-Carbon Coupled Market[J]. Automation of Electric Power Systems, 2023, 47(23): 92-104.

基金

湖北省自然科学基金联合基金项目(2022CFD167)

PDF(617 KB)

Accesses

Citation

Detail

段落导航
相关文章
AI小编
你好!我是《电力建设》AI小编,有什么可以帮您的吗?

/