计及惯量和风电双重不确定性的两阶段分布鲁棒机组组合

张磊, 宋坤泽, 叶婧, 林宇琦, 高任飞

电力建设 ›› 0

PDF(603 KB)
PDF(603 KB)
电力建设 ›› 0

计及惯量和风电双重不确定性的两阶段分布鲁棒机组组合

  • 张磊1,2, 宋坤泽1,2, 叶婧1,2, 林宇琦3, 高任飞1,2
作者信息 +

Two-stage distributed robust unit commitment considering dual uncertainties of inertia and wind power

  • ZHANG Lei1,2, SONG Kunze1,2, YE Jing1,2, LIN Yuqi3, GAO Renfei1,2
Author information +
文章历史 +

摘要

【目的】针对高比例新能源渗透率下电网惯量来源多元化和不确定性所导致的系统频率响应能力不足问题,提出一种在机组组合中考虑惯量来源多元化以及惯量和风电不确定性的方法。【方法】首先,综合调度部门所掌控的同步发电机组惯量、不被调度部门掌控的小型同步发电机组惯量、虚拟惯量和负荷侧惯量,建立惯量不确定性模型。其次,采用基于数据驱动的两阶段分布鲁棒优化模型刻画惯量和风电的双重不确定性,并用1-范数以及∞-范数约束不确定性概率分布置信集合,与此同时,在第二阶段模型中考虑动态频率约束。最后,将模型中含有绝对值的部分线性化,采用列与约束生成算法对两阶段模型求解。【结果】IEEE 118节点系统的仿真算例表明,相较于仅考虑大型同步发电机惯量的机组组合模型,本文所提计及惯量和风电双重不确定性的两阶段分布鲁棒机组组合模型具有更充足的频率响应能力,且发电总成本降低了3.3%。此外,与其他不确定性方法相比,文章构建的模型相较于鲁棒优化模型有更好的经济性,相较于随机优化模型有更强的鲁棒性。【结论】有效平衡了电力系统经济性与鲁棒性之间的关系,从而确保系统在可再生能源高渗透场景下具备动态适应能力。

Abstract

[Objective] Addressing the issue of insufficient system frequency response capability caused by the diversification and uncertainty of grid inertia sources under high renewable energy penetration, this study proposes a unit commitment framework that integrates multi-source inertia dynamics and uncertainties from both inertia and wind power. [Methods] First, an inertia uncertainty model is established by combining inertia contributions from dispatchable synchronous generators, non-dispatchable small synchronous generators, virtual inertia provided by power electronic devices, and load-side inertia. Second, a data-driven two-stage distributionally robust optimization model is developed to characterize the dual uncertainties of inertia and wind power. The model employs 1-norm and ∞-norm constraints to define the confidence set for uncertainty probability distributions, while dynamic frequency constraints are explicitly incorporated into the second-stage model. Finally, absolute-value terms in the formulation are linearized, and the two-stage problem is solved using a column-and-constraint generation algorithm. [Results] Simulation results on the IEEE 118-bus system demonstrate that, compared to the unit commitment model considering only the inertia of large synchronous generators, the proposed two-stage distributionally robust unit commitment model incorporating dual uncertainties of system inertia and wind power exhibits a more sufficient frequency response capability and reduces the total generation cost by 3.3%. Furthermore, the proposed framework exhibits superior economic performance over conventional robust optimization methods and stronger robustness compared to stochastic optimization approaches. [Conclusions] The proposed approach optimally balances power system economic efficiency and operational robustness, thereby enabling dynamic adaptability in high renewable penetration environments.

关键词

系统惯量 / 不确定性 / 动态频率约束 / 机组组合 / 分布鲁棒优化

Key words

system inertia / uncertainty / dynamic frequency constraint / unit combination / distributionally robust optimization

引用本文

导出引用
张磊, 宋坤泽, 叶婧, 林宇琦, 高任飞. 计及惯量和风电双重不确定性的两阶段分布鲁棒机组组合[J]. 电力建设. 0
ZHANG Lei, SONG Kunze, YE Jing, LIN Yuqi, GAO Renfei. Two-stage distributed robust unit commitment considering dual uncertainties of inertia and wind power[J]. Electric Power Construction. 0

参考文献

[1] 鲁宗相,姜继恒,乔颖,等. 新型电力系统广义惯量分析与优化研究综述[J]. 中国电机工程学报, 2023, 43(05): 1754-1776.
Lu Zongxiang, Jiang Jiheng, Qiao Ying, et al.Review of generalized inertia analysis and optimization of new power systems[J]. Chinese Journal of Electrical Engineering, 2023, 43(05): 1754-1776.
[2] 翟苏巍,刘广一,汤亚宸,等. 新型电力系统惯性系数时空分布在线评估[J]. 供用电, 2025, 42(07): 42-51.
Zhai Suwei, Liu Guangyi, Tang Yachen, et al.On-line evaluation of spatial and temporal distribution of inertia coefficient of new power system[J]. Power supply, 2025, 42(07) : 42-51.
[3] 李卫东,晋萃萃,温可瑞,等. 大功率缺失下主动频率响应控制初探[J]. 电力系统自动化, 2018, 42(08): 22-30.
Li Weidong, Jin Cui, Wen Kerui, et al.Preliminary study on active frequency response control under high power loss[J]. Power system automation, 2018, 42(08): 22-30.
[4] R. Yan, N. Masood, T. K. Saha, F. Bai and Huajie Gu. The Anatomy of the 2016 South Australia Blackout: A Catastrophic Event in a High Renewable Network[J], IEEE Transactions on Power Systems, Vol. 33, No. 5, pp. 5374-5388, September, 2018.
[5] 孙华东,许涛,郭强,等. 英国“8·9”大停电事故分析及对中国电网的启示[J]. 中国电机工程学报, 2019,39(21): 6183-6192.
Sun Huadong, Xu Tao, Guo Qiang, et al.British '8·9' blackout accident analysis and its enlightenment to China's power grid[J]. Chinese Journal of Electrical Engineering, 2019, 39(21): 6183-6192
[6] 王伟胜,林伟芳,何国庆,等. 美国得州2021年大停电事故对我国新能源发展的启示[J]. 中国电机工程学报, 2021, 41(12): 4033-4043.
Wang Weisheng, Lin Weifang, He Guoqing, et al.The enlightenment of the Texas blackout in 2021 on the development of new energy in China[J]. Chinese Journal of Electrical Engineering, 2021, 41(12): 4033-4043.
[7] 张嘉琪,胥国毅,王程,等. 考虑同步机调差系数灵敏度与频率约束的机组组合[J]. 电力系统保护与控制, 2023, 51(13): 102-110.
Zhang Jiaqi, Xu Guoyi, Wang Cheng, et al.Unit commitment considering sensitivity of synchronous generator adjustment coefficient and frequency constraint[J]. Power system protection and control, 2023, 51(13): 102-110.
[8] 仇兴华,朱志莹,徐政,等. 考虑火电深度调峰下动态频率约束的机组组合[J]. 电气自动化, 2025, 47(04): 25-29+33.
Qiu Xinghua, Zhu Zhiying, Xu Zheng, et al. Unit commitment considering dynamic frequency constraints under deep peak shaving of thermal power [J]. Electrical Automation, 2025, 47 (04) : 25-29+33.
[9] 蔡国伟,钟超,吴刚,等. 考虑风电机组超速减载与惯量控制的电力系统机组组合策略[J]. 电力系统自动化, 2021, 45(16): 134-142.
Cai Guowei, Zhong Chao, Wu Gang, et al.Unit Commitment Strategy of Power System Considering Overspeed Load Shedding and Inertia Control of Wind Turbines[J]. Power System Automation, 2021, 45(16): 134-142.
[10] 杨德友,孟振,王博,等. 暂态频率约束下考虑新能源最优减载的机组组合双层优化策略[J]. 电力建设, 2023, 44(02): 74-82.
Yang Deyou, Meng Zhen, Wang Bo, et al.Unit commitment bi-level optimization strategy considering optimal load shedding of renewable energy under transient frequency constraints[J]. Power construction, 2023, 44(02): 74-82.
[11] 李世春,罗颖,黄森焰,等. 配电网侧小水电群整体惯量估计方法[J]. 水电能源科学, 2022, 40(04): 208-211+149.
Li Shichun, Luo Ying, Huang Senyan, etc. Method for estimating the overall inertia of small hydropower groups on the distribution network side[J]. Hydroelectric Energy Science, 2022, 40(04): 208-211 + 149.
[12] 曾辉,苏安龙,葛延峰,等. 考虑负荷特性的区域电网在线转动惯量快速估计算法[J]. 电网技术, 2023, 47(02): 423-436.
Zeng Hui, Su Anlong, Ge Yanfeng, et al.On-line fast moment of inertia estimation algorithm for regional power grid considering load characteristics[J]. Grid technology, 2023, 47(02): 423-436.
[13] Bian Yuankai, Wyman-Pain H, Li Furong, et al.Demand side contributions for system inertia in the GB power system[J]. IEEE Transactions on Power Systems, 2018, 33(04): 3521-3530.
[14] Cao,Xue, Stephen, et al. Switching markov gaussian models for dynamic power system inertia estimation[J]. IEEE Transactions on Power Systems: A Publication of the Power Engineering Society, 2016, 31(05): 3394-3403
[15] 张磊,李海涛,熊致知,等. 基于可解释性XGBoost的电力系统惯量短期预测方法[J]. 电力建设, 2023,44(08): 22-30.
Zhang Lei, Li Haitao, Xiong Zhizhi, et al.Short-term prediction method of power system inertia based on interpretable XGBoost[J]. Power Construction, 2023, 44(08): 22-30.
[16] 巴文岚,文云峰,叶希,等. 风电高渗透电网等效惯量概率预测方法[J]. 电力自动化设备, 2023, 43(03): 124-130+165.
Ba Wenlan, Wen Yunfeng, Ye Xi, etc. Probabilistic prediction method of equivalent inertia for wind power high permeability grid[J]. Electric power automation equipment, 2023, 43(03): 124-130+165.
[17] 叶婧,林宇琦,张磊,等. 考虑负荷侧惯量不确定性的机组组合[J]. 电力系统及其自动化学报, 2024,36(07): 11-21.
Ye Jing, Lin Yuqi, Zhang Lei, et al.Unit commitment considering load-side inertia uncertainty[J]. Journal of Power Systems and Automation, 2024, 36(07): 11-21.
[18] NING Chao, YOU Fengqi.Data-driven stochastic robust optimization : general computational framework and algorithm leveraging machine learning for optimization under uncertainty in the big data era[J]. Computers & Chemical Engineering, 2018, (111): 115-133.
[19] 叶婧,周正坤,何杰辉,等. 计及负荷侧惯量和故障概率的两阶段鲁棒机组组合[J]. 山东电力技术, 2025, 2(04): 1-10.
Ye Jing, Zhou Zhengkun, He Jiehui, etc. Two-stage robust unit commitment considering load-side inertia and fault probability[J]. Shandong Electric Power Technology, 2025, 52(04) : 1-10.
[20] 孙华东,王宝财,李文锋,等. 高比例电力电子电力系统频率响应的惯量体系研究[J]. 中国电机工程学报, 2020, 40(16): 5179-5192.
Sun Huadong, Wang Baocai, Li Wenfeng, et al.Research on the inertia system of frequency response of high proportion power electronic power system[J]. Chinese Journal of Electrical Engineering, 2020, 40(16): 5179-5192.
[21] 唐文虎,聂欣昊,钱瞳,等. 面向新型电力系统安全稳定的储能应用技术研究综述与展望[J]. 广东电力, 2024, 37(12): 3-15.
Tang Wenhu, Nie Xinhao, Qian Tong, et al.Review and Prospect of Research on Energy Storage Application Technology for New Power System Security and Stability[J]. Guangdong Power, 2024, 37(12) : 3-15.
[22] 林晓煌,文云峰,杨伟峰. 惯量安全域:概念、特点及评估方法[J]. 中国电机工程学报, 2021, 41(09): 3065-3079.
Lin Xiaohuang, Wen Yunfeng, Yang Weifeng.Inertia safety region : concept, characteristics and evaluation methods[J]. Chinese Journal of Electrical Engineering, 2021, 41(09): 3065-3079.
[23] 张武其,文云峰,迟方德,等. 电力系统惯量评估研究框架与展望[J]. 中国电机工程学报, 2021, 41(20): 6842-6856.
Zhang Wuqi, Wen Yunfeng, Chi Fangde, etc. Research framework and prospect of power system inertia evaluation[J]. Chinese Journal of Electrical Engineering, 2021, 41(20): 6842-6856.
[24] 刘学成,杨军,申锦鹏,等. 基于系统动力学模型的电力系统等效惯量时空演变趋势研究[J]. 全球能源互联网, 2024, 7(05): 579-590.
Liu Xuecheng, Yang Jun, Shen Jinpeng, et al.Research on the spatio-temporal evolution trend of equivalent inertia of power system based on system dynamics model[J]. Global Energy Internet, 2024, 7(05) : 579-590.
[25] 张文博,邢海军,聂立君,等. 考虑高渗透率可再生能源的新型电力系统可靠性评估综述[J]. 电测与仪表, 2025, 62(09): 51-61+72.
Zhang Wenbo, Xing Haijun, Nie Lijun, etc. Review of reliability assessment of new power systems considering high-permeability renewable energy sources [J].Electrical measurement and instrumentation, 2025, 62 (09) : 51-61+72.
[26] 缪蔡然,江叶峰,施琳,等. 快速频率响应负荷参与惯量辅助服务能力评估及应用[J]. 电力系统自动化, 2024, 48( 16): 99-108.
Miao Cairan, Jiang Yefeng, Shi Lin, et al.Evaluation and application of fast frequency response load participating in inertia auxiliary service capability[J]. Power system automation, 2024, 48(16): 99-108.
[27] 陈鑫宇,王琛淇,于晨阳,等. 负荷侧惯量估计的精细化统计修正方法[J]. 电力工程技术, 2024, 43(03): 244-253.
Chen Xinyu, Wang Chenqi, Yu Chenyang, et al.Refined Statistical Correction Method for Load Side Inertia Estimation[J]. Power Engineering Technology, 2024, 43(03): 244-253.
[28] 王岑峰,王蕾,孙飞飞,等. 基于模糊逻辑控制的混合储能辅助风电调频的双层优化配置模型[J]. 高压电器, 2024, 60(10): 54-63.
Wang Cenfeng, Wang Lei, Sun Feifei, etc. Bi-level optimal configuration model of hybrid energy storage assisted wind power frequency regulation based on fuzzy logic control[J]. High voltage electrical apparatus, 2024, 60(10) : 54-63.
[29] 赵冬梅,殷加玞. 考虑源荷双侧不确定性的模糊随机机会约束优先目标规划调度模型[J]. 电工技术学报, 2018, 33(05): 1076-1085.
Zhao Dongmei, Yin Jiaqin.Fuzzy stochastic chance constrained priority objective programming scheduling model considering source-load bilateral uncertainty[J]. Journal of Electrical Engineering, 2018, 33(05): 1076-1085.
[30] 郑乐,胡伟,陆秋瑜,等. 储能系统用于提高风电接入的规划和运行综合优化模型[J]. 中国电机工程学报, 2014, 34(16): 2533-2543.
Zheng Le, Hu Wei, Lu Qiuyu, etc. Integrated optimization model for planning and operation of energy storage system to improve wind power integration[J]. Chinese Journal of Electrical Engineering, 2014, 34(16): 2533-2543.
[31] 何奇,张宇,邓玲,等. 基于水电储能调节的风光水发电联合优化调度策略[J]. 广东电力, 2024, 37(03): 12-24.
He Qi, Zhang Yu, Deng Ling, et al.Joint optimal scheduling strategy of wind-solar-hydro power generation based on hydropower energy storage regulation[J]. Guangdong Electric Power, 2024, 37(03) : 12-24.
[32] 于唯一,王慧芳,曹芬,等. 考虑场景缩减和动态寿命的用户侧新能源配储研究[J]. 电测与仪表, 2024, 61(09): 127-136.
Yu Yi, Wang Huifang, Cao Fen, et al.Research on user-side new energy storage considering scenario reduction and dynamic life[J]. Electrical measurement and instrumentation, 2024,61(09) : 127-136.
[33] 高海淑,张玉敏,吉兴全,等. 基于场景聚类的主动配电网分布鲁棒综合优化[J]. 电力系统自动化, 2020, 44(21): 32-41.
Gao Haishu, Zhang Yumin, Ji Xingquan, et al.Robust comprehensive optimization of active distribution network distribution based on scene clustering[J]. Power system automation, 2020, 44(21): 32-41
[34] ZHAO Chaoyue, GUAN Yongpei.Data-driven stochastic unit commitment for integrating wind generation[J]. IEEE Transactions on Power Systems, 2016, 31(04): 2587-2596.
[35] 贺帅佳,高红均,刘俊勇,等. 计及需求响应柔性调节的分布鲁棒DG优化配置[J]. 中国电机工程学报, 2019, 39(08): 2253-2264+8.
He Shuaijia, Gao Hongjun, Liu Junyong, et al. Optimal configuration of distributed robust DG considering flexible adjustment of demand response[J]. Chinese Journal of Electrical Engineering, 2019, 39 (08): 2253-2264+8.
[36] An Y, Zeng B.Exploring the modeling capacity of two-stage robust optimization: Variants of robust unit commitment model[J]. IEEE transactions on Power Systems, 2014, 30(1): 109-122.
[37] 滕孟杰,陈晨,赵宇鸿,等. 不确定风电接入下计及煤电机组深调和储能的电力系统分布鲁棒优化日前调度方法[J]. 电网技术, 2024, 48(08): 3122-3132.
Teng Mengjie, Chen Chen, Zhao Yuhong, et al.Robust optimization day-ahead scheduling method for power system distribution considering deep harmonic energy storage of coal-fired units under uncertain wind power access[J]. Grid technology, 2024, 48(08): 3122-3132.
[38] 孙旭,邱晓燕,张志荣,等. 基于数据驱动的交直流配电网分布鲁棒优化调度[J]. 电网技术, 2021, 45(12): 4768-4778.
Sun Xu, Qiu Xiaoyan, Zhang Zhirong, et al.Data-driven distributed robust optimal scheduling of AC/DC distribution networks[J]. Grid Technology, 2021, 45(12): 4768-4778.
[39] PENA I, MARTINEZ-ANIDO C B, HODGE B M. An extended IEEE 118-bus test system with high renewable penetration[J]. IEEE Transactions on Power Systems, 2018, 33(1): 281-289.
[40] YE Hongxing, LI Zuyi.Robust security-constrained unit commitment and dispatch with recourse cost requirement[J]. IEEE Transactions on Power Systems, 2016, 31(5): 3527-3536.
[41] 徐文韬,米阳,蔡鹏程,等. 基于机会约束规划的含多微网主动配电网分布式优化管理[J]. 电力建设, 2024, 45(11): 1-13.
Xu Wentao, Mi Yang, Cai Pengcheng, et al.Distributed optimal management of active distribution network with multi-microgrids based on chance constrained programming[J].Power Construction, 2024, 45(1 ) : 1-13.
[42] 李浩然,姚方,宋显锦. 计及源荷不确定性的综合能源系统协同优化策略[J]. 分布式能源, 2024, 9(05): 32-40.
Li Haoran, Yao Fang, Song Xianjin.Collaborative optimization strategy of integrated energy system considering source-load uncertainty[J]. Distributed energy, 2024,9(05) : 32-40.

基金

国家自然科学基金重点项目(62233006)

PDF(603 KB)

Accesses

Citation

Detail

段落导航
相关文章
AI小编
你好!我是《电力建设》AI小编,有什么可以帮您的吗?

/