【目的】为降低电力系统碳排放量,提高清洁能源消纳率,以总成本最小化为目标,提出一种基于热电联产-碳捕集-电转气(combined heat and power (CHP)-carbon capture and storage (CCS)-power-to-gas(P2G), CCP)耦合机制和低碳需求响应(low-carbon demand response, LCDR)的多能耦合区域综合能源系统(regional integrated energy systems, RIES)协同优化方法,构建源-荷双向灵活低碳调度模型。【方法】首先,在供给侧引入碳交易-绿色证书机制,建立基于基准线法的碳排放分配模型,激励系统消纳可再生能源;其次,以CHP-CCS-P2G多能耦合机组为基础,通过碳循环利用与能量梯级转化,实现系统能效提升;然后,荷侧引入计及负荷特性差异的低碳需求响应机制,建立基于价格弹性矩阵的电、热负荷双向互动机制,以降低负荷峰谷差值。【结果】以中国南方某城市某行政区的电力相关数据进行相关仿真实验,结果表明在所提方法下,系统的碳排放和运行成本均有下降,风光消纳能力有所提高,其中场景6较基础场景的运行成本减少了5.26%。【结论】所提方法可使得碳元素形成闭环转化,有效降低传统发电机组的出力,增加新能源的上网功率,同时可通过激励信号实现“削峰填谷”,降低系统的碳排放,使系统处于低碳经济运行状态。
Abstract
[Objective] In order to reduce carbon emissions in the power system and improve the absorption rate of clean energy, with the goal of minimizing total cost, a multi energy coupling regional integrated energy systems (RIES) collaborative optimization method based on combined heat and power (CHP)-carbon capture and storage(CCS)-power-to-gas (P2G) (CCP) coupling mechanism and LCDR (low-carbon demand response, LCDR) is proposed, and a source load bidirectional flexible low-carbon scheduling model is constructed. [Methods] Firstly, a carbon trading green certificate mechanism is introduced on the supply side, and a carbon emission allocation model based on the baseline method is established to incentivize the system to consume renewable energy; Secondly, based on the CHP-CCS-P2G multi energy coupling unit, the system's energy efficiency can be improved through carbon recycling and energy cascade conversion; Then, the load side introduces a low carbon demand response mechanism that takes into account differences in load characteristics, establishing a bidirectional interaction mechanism between electricity and heat loads based on price elasticity matrices to reduce peak to valley load differences. [Results] Relevant simulation experiments were conducted using electricity related data from an administrative district in a city in southern China. The results showed that under the proposed method, the system's carbon emissions and operating costs were reduced, and the wind and solar power consumption capacity was improved. Among them, scenario 6 reduced the operating costs by 5.26% compared to the basic scenario. [Conclusions] The method proposed in the article can form a closed-loop conversion of carbon elements, effectively reduce the output of traditional power generation units, increase the grid power of new energy, and achieve "peak shaving and valley filling" through excitation signals, reducing the carbon emissions of the system and putting it in a low-carbon economic operation state.
关键词
源-荷双向灵活 /
低碳需求响应(LCDR) /
区域综合能源系统(RIES) /
低碳经济调度
Key words
bi-directional flexibility between supply and demand /
low-carbon demand response (LCDR) /
regional integrated energy system (RIES) /
low-carbon economic dispatch
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] IPCC. Special report on global warming of 1.5°C[M]. UK: Cambridge University Press, Cambridge, UK and New York, USA, 2018.
[2] 曾珠梅,孙建梅. 计及电-气-热需求响应的区域综合能源系统运行优化[J]. 电力工程技术, 2024, 43(05): 48-57.
Zeng, Zhumei,Sun, Jianmei.Operation Optimization of Regional Integrated Energy Systems Considering Electricity-Gas-Heat Demand Response[J]. Electric Power Engineering Technology, 2024, 43(05): 48-57.
[3] 张浩,陆海,罗恩博,等. 考虑资源灵活性的多区域综合能源系统协同调度[J]. 电网与清洁能源, 2024, 40(09): 148-154.
Zhang, Hao, Lu, Hai, Luo, Enbo, et al.Coordinated Scheduling of Multi-Regional Integrated Energy Systems Considering Resource Flexibility[J]. Power Grid and Clean Energy, 2024, 40(09): 148-154.
[4] 盛万兴,段青,王良,等.基于多代理协调机制的能量路由器群组与配电网综合规划[J].高电压技术,2021, 47(01): 1-13.
SHENG Wanxing, DUAN Qing, WANG Liang, et al.Integrated planning of energy router groups and distribution networks based on multi-agent coordination mechanism[J]. High Voltage Engineering, 2021, 47(01): 1-13.
[5] HANIF Imran, AZIZ Babar, CHAUDHRY Imran Sharif.Carbon emissions across the spectrum of renewable and nonrenewable energy use in developing economies of Asia[J]. Renewable Energy, 2019, 143: 586-595.
[6] 国际能源署(IEA). 《全球能源与碳排放报告》[R]. 巴黎: 国际能源署, 2020.
International Energy Agency (IEA). Global Energy and Carbon Emissions Report[R]. Paris: International Energy Agency, 2020.
[7] 中国电力企业联合会. 中国电力行业年度发展报告[R]. 北京: 中国电力企业联合会, 2022.
China Electricity Council.Annual Development Report of China’s Electric Power Industry[R]. Beijing: China Electricity Council, 2022.
[8] Abdul Latif S N, Chiong M S, Rajoo S, et al. The trend and status of energy resources and greenhouse gas emissions in the Malaysia power generation mix[J]. Energies, 2021, 14(8): 2200.
[9] 周建华,梁昌誉,史林军,等. 计及阶梯式碳交易机制的综合能源系统优化调度[J]. 中国电力, 2025, 58(02): 77-87.
ZHOU Jianhua, LIANG Changyu, SHI Linjun, et al.Optimal dispatch of integrated energy systems considering tiered carbon trading mechanism[J]. Electric Power, 2025, 58(02): 77-87.
[10] 颜宁,马广超,李相俊,等.考虑跨季节性储能的园区综合能源系统低碳经济调度方法[J].高电压技术,2023, 49(10): 4182-4191.
YAN Ning, MA Guangchao, LI Xiangjun, et al.Low-carbon economic dispatch method for park-level integrated energy systems considering interseasonal energy storage[J]. High Voltage Engineering, 2023, 49(10): 4182-4191.
[11] 邢家维,程艳,于芃,等. 基于合作博弈的多园区互联综合能源系统低碳经济调度[J].山东电力技术,2024, 51(5): 19-29.
XING Jiawei, CHENG Yan, YU Peng, et al.Low-carbon economic scheduling of multiple interconnected park-level integrated energy systems based on cooperative game[J]. Shandong Electric Power, 2024, 51(5): 19-29.
[12] 李红伟,吴佳航,王佳怡,等.计及P2G及碳捕集的风光氢储综合能源系统低碳经济调度[J].电力系统保护与控制,2024,52(16): 26-36.
LI Hongwei, WU Jiahang, WANG Jiayi, et al.Low-carbon economic dispatch of integrated wind-solar-hydrogen-storage energy system considering P2G and carbon capture[J]. Power System Protection and Control, 2024, 52(16): 26-36.
[13] 安源,嘉程昊,宁旭阳,等.考虑风光相关性与灵活碳捕集的互补系统低碳经济调度[J].太阳能学报,2024, 45(11): 40-49.
AN Yuan, JIA Chenghao, NING Xuyang, et al.Low-carbon economic dispatch of complementary systems considering wind-solar correlation and flexible carbon capture[J]. Acta Energiae Solaris Sinica, 2024, 45(11): 40-49.
[14] 吕游,毛乃新,秦瑞钧,等.考虑风光及负荷不确定性的虚拟电厂低碳经济调度[J].太阳能学报,2024, 45(11): 116-123.
LV You, MAO Naixin, QIN Ruijun, et al.Low-carbon economic dispatch of virtual power plants considering uncertainties in wind-solar generation and load[J]. Acta Energiae Solaris Sinica, 2024, 45(11): 116-123.
[15] 魏震波,马新如,郭毅,等. 碳交易机制下考虑需求响应的综合能源系统优化运行[J].电力建设,2022,43(01): 1-9.
WEI Zhenbo, MA Xinru, GUO Yi, et al.Optimal operation of integrated energy systems considering demand response under carbon trading mechanism[J]. Electric Power Construction, 2022, 43(01): 1-9.
[16] YU Guangzheng, ZHANG Zhenlong, CUI Gean, DONG Qi, WANG Siyuan, LI Xingchen, SHEN Lingxu, YAN Huaze.Low-carbon economic dispatching strategy based on feasible region of cooperative interaction between wind-storage system and carbon capture power plant[J]. Renewable Energy, 2024, 228: 120706.
[17] 姜河,周航,赵琰,等.计及新能源消纳与碳捕集电厂的多能源系统优化调度研究[J].可再生能源,2024,42(11): 1536-1545.
JIANG He, ZHOU Hang, ZHAO Yan, et al.Optimal dispatch of multi-energy systems considering renewable energy consumption and carbon capture power plants[J]. Renewable Energy Resources, 2024, 42(11): 1536-1545.
[18] 骆钊,杨林燕,王华,等.含碳捕集电厂-电转气-液化天然气协同的综合能源系统优化调度[J].太阳能学报,2025, 46(01): 438-448.
LUO Zhao, YANG Linyan, WANG Hua, et al.Optimal dispatch of integrated energy systems with coordinated operation of carbon capture power plants, P2G, and LNG[J]. Solar Energy Journal, 2025, 46(01): 438-448.
[19] 刘晓军,聂凡杰,杨冬锋,等.碳捕集电厂-电转气联合运行模式下考虑绿证-碳交易机制的综合能源系统低碳经济调度[J].电网技术,2023, 47(06): 2207-2222.
LIU Xiaojun, NIE Fanjie, YANG Dongfeng, et al.Low-carbon economic dispatch of integrated energy systems considering carbon-green certificate trading under coordinated operation of carbon capture and P2G[J]. Power System Technology, 2023, 47(06): 2207-2222.
[20] 潘路欣,王东林,葛津铭,等.计及需求响应与碳—绿证交易的P2G系统园区综合能源优化[J].电网与清洁能源,20 25,41(03): 92-102.
PAN Luxin, WANG Donglin, GE Jinming, et al.Integrated energy system optimization for park-level P2G considering demand response and carbon-green certificate trading[J]. Power Grid and Clean Energy, 2025, 41(03): 92-102.
[21] 杨晓辉,邓叶恒,王晓鹏,等.基于碳交易-绿色证书联合交易机制的含CHP-CCS-P2G耦合的区域综合能源系统低碳经济调度[J].太阳能学报,2024,45(06): 244-254.
YANG Xiaohui, DENG Yeheng, WANG Xiaopeng, et al.Low-carbon economic dispatch of regional integrated energy system with CHP-CCS-P2G coupling based on joint carbon and green certificate trading mechanism[J]. Acta Energiae Solaris Sinica, 2024, 45(06): 244-254.
[22] 喻鑫,胡志坚,陈锦鹏,等.阶梯碳下考虑P2G-CCS与供需灵活响应的IES优化调度[J].武汉大学学报(工学版),2024,57(10): 1360-1371.
YU Xin, HU Zhijian, CHEN Jinpeng, et al.Optimal dispatch of integrated energy systems considering P2G-CCS and flexible supply-demand response under tiered carbon policy[J]. Journal of Wuhan University (Engineering Edition), 2024, 57(10): 1360-1371.
[23] Ma F, Ying L, Cui X, Yu Q.Research on a Low-Carbon Optimization Strategy for Regional Power Grids Considering a Dual Demand Response of Electricity and Carbon[J]. Sustainability. 2024; 16(16): 7000.
[24] 刘子华,曹瑞峰,赵志扬,等. 基于碳排放流的综合能源系统碳排放监测方法[J].浙江电力, 2023, 42(10): 65-72.
LIU Zihua, CAO Ruifeng, ZHAO Zhiyang, et al.A carbon emission monitoring method for integrated energy systems based on carbon emission flow[J]. Zhejiang Electric Power,20 23,42(10): 65-72.
[25] XU Li, DENG Jianhua, LIU Jichun.Energy-carbon-green certificates management strategy for integrated energy system using carbon-green certificates double-direction interaction[J]. Renewable Energy, 2025, 238: 121937.
[26] 江训谱,吕施霖,王健,等.考虑阶梯碳交易和最优建设时序的园区综合能源系统规划[J].电测与仪表, 2023, 60(12): 11-19.
JIANG Xunpu, LV Shilin, WANG Jian, et al.Park-level integrated energy system planning considering tiered carbon trading and optimal construction timing[J]. Electrical Measurement & Instrumentation, 2023, 60(12):11-19.
[27] 秦婷,刘怀东,王锦桥,等.基于碳交易的电热气综合能源系统低碳经济调度[J]. 电力系统自动化, 2018, 42(14): 813,22.
QIN Ting, LIU Huaidong, WANG Jinqiao, et al.Carbon trading based lowcarbon economic dispatch for integrated electricity heatgas energy system[J]. Automation of electric power systems,20 18,42(14): 813,22.
[28] 张翰林,汪睿哲,刘友波,等.考虑源荷碳势耦合的电力系统双层低碳经济调度[J]. 电力建设, 2023,44(12):28-42.
ZHANG Hanlin, WANG Ruizhe, LIU Youbo, et al.Two-stage low-carbon economic scheduling of power system considering source-load carbon intensity coupling[J]. Electric Power Construction, 2023, 44(12): 28-42.
[29] 徐睿婕,任永峰,祝荣,等.基于绿证-碳交易交互机制与合作博弈理论的IES系统低碳经济调度[J].太阳能学报,2024,45(09): 91-100.
XU Ruijie, REN Yongfeng, ZHU Rong, et al.Low-carbon economic dispatch of integrated energy systems based on green certificate-carbon trading interaction and cooperative game theory[J]. Acta Energiae Solaris Sinica, 2024, 45(09): 91-100.
[30] 张涛,王金,梅欣,等.考虑碳-绿证的多主体多园区合作博弈优化调度[J].电力自动化设备,2024,44(09): 129-135+15.
ZHANG Tao, WANG Jin, MEI Xin, et al. Cooperative game-based optimal dispatch of multiple agents and multi-park systems considering carbon and green certificates[J]. Electric Power Automation Equipment, 2024, 44(09): 129-135+15.
基金
国家自然科学基金项目(52311530337)