风电接入真双极柔直系统的送端换流器协调控制策略

李博通, 吝梦媛, 郑光辉, 董岳金, 刘轶超

电力建设 ›› 0

PDF(1692 KB)
PDF(1692 KB)
电力建设 ›› 0

风电接入真双极柔直系统的送端换流器协调控制策略

  • 李博通1,2,3, 吝梦媛1,2,3, 郑光辉1,2,3, 董岳金1,2,3, 刘轶超4
作者信息 +

Coordinated Control Strategy of Sending-End Converters for Wind-Integrated Real Bipolar MMC-HVDC Systems

  • LI Botong1,2,3, LIN Mengyuan1,2,3, ZHENG Guanghui1,2,3, DONG Yuejin1,2,3, LIU Yichao4
Author information +
文章历史 +

摘要

【目的】采用真双极接线方式的基于模块化多电平换流器的柔性直流输电(modular multilevel converter based high voltage direct current, MMC-HVDC)技术是大规模孤岛风电场高效并网与跨区消纳的主流技术方案之一,在我国张北、江苏如东等直流输电工程广泛采用。然而,送端正负极换流器的控制策略面临平衡双极传输功率和为风电场提供稳定电压支撑的双重挑战。为此,提出了基于有功功率-频率上升/无功功率-电压下垂控制的双极换流器构网协调控制策略。【方法】分析了送端双极换流器接收的有功功率-相位-频率的耦合机理,建立了有功功率-频率上升控制策略,阐明了风电波动下双极换流器功率平衡、频率协调及容量受限工况下的自适应调节机理;揭示了送端双极换流器和风电场电压与无功的耦合关系,建立了受容量和有功功率约束的无功功率-电压下垂控制策略,研究了无功波动时交流母线电压的协调稳定机理。【结果】仿真验证表明,在系统功率波动及单极容量受限等多种情况下,所提策略能有效维持双极换流器间的功率动态均衡,并为交流系统提供稳定的电压频率支撑。【结论】所提构网协调控制策略能够有效应对孤岛风电场柔直送出系统送端双极换流器在复杂工况下的功率平衡与电压频率支撑的核心挑战,提升系统的运行稳定性。

Abstract

[Objective] Modular multilevel converter based high voltage direct current technology (MMC-HVDC) with real bipolar connection is one of the mainstream technical solutions for efficient grid connection and cross-regional consumption of large-scale islanded wind farms. It has been widely adopted in HVDC projects such as Zhangbei and Rudong in Jiangsu. However, the control strategy for the sending-end positive and negative pole converters faces the dual challenge of balancing bipolar transmission power and providing stable voltage support for the wind farm. To address this, a grid-forming coordination control strategy based on active power-frequency boost / reactive power-voltage droop control for bipolar converters is proposed. [Methods] The relationship between the active power received by the sending-end bipolar converters and the phase and frequency is analyzed. An active power-frequency boost control strategy is established, clarifying the power balance and frequency coordination of bipolar converter under wind power fluctuation and the adaptive regulation mechanism under capacity-limited conditions. The coupling relationship between the voltage and reactive power of the sending end converters and wind farm is revealed. A reactive power-voltage droop control strategy with capacity and active power constraints is established. The coordinated stability mechanism of AC bus voltage under reactive power fluctuation is investigated. [Results] Simulation results demonstrate that the proposed strategy can effectively maintain dynamic power balance between the bipolar converters and provide stable voltage and frequency support for the AC system under various conditions, including system power fluctuations and single-pole capacity limitations. [Conclusions] The coordinated control strategy proposed can effectively deal with the core challenges of power balance and voltage and frequency support for the wind farm under complex working conditions, and improve the operation stability of the system.

关键词

孤岛风电场 / 柔性直流输电系统 / 送端双极换流器 / 有功功率-频率上升控制 / 无功功率-电压下垂控制 / 协调控制策略

Key words

islanded wind farm / MMC-HVDC / sending-end bipolar converters / active power-frequency rise control / reactive power-voltage droop control / coordinated control strategy

引用本文

导出引用
李博通, 吝梦媛, 郑光辉, 董岳金, 刘轶超. 风电接入真双极柔直系统的送端换流器协调控制策略[J]. 电力建设. 0
LI Botong, LIN Mengyuan, ZHENG Guanghui, DONG Yuejin, LIU Yichao. Coordinated Control Strategy of Sending-End Converters for Wind-Integrated Real Bipolar MMC-HVDC Systems[J]. Electric Power Construction. 0

参考文献

[1] 张智刚, 康重庆. 碳中和目标下构建新型电力系统的挑战与展望[J]. 中国电机工程学报, 2022, 42(8): 2806-2819.
ZHANG Zhigang, KANG Chongqing.Challenges and prospects for constructing the new-type power system towards a carbon neutrality future[J]. Proceedings of the CSEE, 2022, 42(8): 2806-2819.
[2] 杨铎烔, 俞靖一, 葛俊, 等. 海上风电场自适应多目标无功优化控制策略[J]. 电力工程技术, 2024, 43(3): 121-129.
YANG Duotong, YU Jingyi, GE Jun, et al.Adaptive multi-objective reactive power optimization control strategy for offshore wind farms[J]. Electric Power Engineering Technology, 2024, 43(3): 121-129.
[3] 中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要[N]. 人民日报, 2021-03-13(1).
[4] 王凯伦, 宋强, 赵彪, 等. 基于虚拟调速控制的大型孤岛新能源基地LCC直流送出方案[J]. 电力系统自动化, 2025, 49(8): 54-65.
WANG Kailun, SONG Qiang, ZHAO Biao, et al.LCC-HVDC transmission scheme for large-scale islanded renewable energy bases based on virtual governor control[J]. Automation of Electric Power Systems, 2025, 49(8): 54-65.
[5] 孟沛彧. 可再生能源基地不同接入方式下直流系统拓扑构建与控制策略研究[D]. 武汉: 华中科技大学, 2024.
MENG Peiyu.Research on topology construction and control strategy of HVDC transmission system under different access methods of renewable energy bases[D]. Wuhan: Huazhong University of Science and Technology, 2024.
[6] 张艳, 张旭, 张静怡, 等. 考虑风电不确定性的沙戈荒新能源基地交直流混合外送系统最大传输能力评估[J]. 电力建设, 2024, 45(12): 174-186.
ZHANG Yan, ZHANG Xu, ZHANG Jingyi, et al.Evaluation of total transmission capacity of AC-DC hybrid delivery system in desert new energy base considering the uncertainty of wind power[J]. Electric Power Construction, 2024, 45(12): 174-186.
[7] GUO H L, ZHANG Z R, XU Z.Parallel converter-based hybrid HVDC system for integration and delivery of large-scale renewable energy[J]. Journal of Modern Power Systems and Clean Energy, 2024, 13(2): 688-697.
[8] 辛保安, 郭铭群, 王绍武, 等. 适应大规模新能源友好送出的直流输电技术与工程实践[J]. 电力系统自动化, 2021, 45(22): 1-8.
XIN Baoan, GUO Mingqun, WANG Shaowu, et al.Friendly HVDC transmission technologies for large-scale renewable energy and their engineering practice[J]. Automation of Electric Power Systems, 2021, 45(22): 1-8.
[9] RODRIGUEZ P, ROUZBEHI K.Multi-terminal DC grids: challenges and prospects[J]. Journal of Modern Power Systems and Clean Energy, 2017, 5(4): 515-523.
[10] LI Z X, TANG B J, SONG Q, et al.Low-cost and compact asymmetrical unidirectional-current modular multilevel converters[J]. IEEE Transactions on Power Electronics, 2023, 38(3): 3398-3411.
[11] 饶宏, 黄伟煌, 郭知非, 等. 柔性直流输电技术在大电网中的应用与实践[J]. 高电压技术, 2022, 48(9): 3347-3355.
RAO Hong, HUANG Weihuang, GUO Zhifei, et al.Practical experience of VSC-HVDC transmission in large grid[J]. High Voltage Engineering, 2022, 48(9): 3347-3355.
[12] 陶思钰, 江福庆. 集群化发展模式下风电场预测、规划及控制关键技术综述[J]. 电力工程技术, 2024, 43(1): 86-99.
TAO Siyu, JIANG Fuqing.Review of the key technologies of wind farm cluster prediction, planning and control[J]. Electric Power Engineering Technology, 2024, 43(1): 86-99.
[13] 凌卫家, 孙维真, 张静, 等. 舟山多端柔性直流输电示范工程典型运行方式分析[J]. 电网技术, 2016, 40(6): 1751-1758.
LING Weijia, SUN Weizhen, ZHANG Jing, et al.Analysis of typical operating modes of Zhoushan multi-terminal VSC-HVDC pilot project[J]. Power System Technology, 2016, 40(6): 1751-1758.
[14] 王国钰, 范春菊, 李潇. 伪双极接线不同接地方式下直流配电线路故障选极方案[J]. 电网技术, 2022, 46(9): 3570-3579.
WANG Guoyu, FAN Chunju, LI Xiao.Fault pole selection of DC distribution lines under pseudo-bipolar wiring with different grounding modes[J]. Power System Technology, 2022, 46(9): 3570-3579.
[15] 杜晓磊, 郭庆雷, 吴延坤, 等. 张北柔性直流电网示范工程控制系统架构及协调控制策略研究[J]. 电力系统保护与控制, 2020, 48(9): 164-173.
DU Xiaolei, GUO Qinglei, WU Yankun, et al.Research on control system structure and coordination control strategy for Zhangbei demonstration project of MMC-HVDC grid[J]. Power System Protection and Control, 2020, 48(9): 164-173.
[16] 林少伯, 李新年, 雷霄, 等. 张北柔性直流电网运行方式转换风险分析及预防措施[J]. 电网技术, 2023, 47(10): 4017-4025.
LIN Shaobo, LI Xinnian, LEI Xiao, et al.Risk analysis and prevention measures of operation mode transformation for Zhangbei VSC-based DC grid[J]. Power System Technology, 2023, 47(10): 4017-4025.
[17] 雷霄, 杨立敏, 朱艺颖, 等. 白鹤滩-江苏特高压混合级联直流工程数模仿真平台构建及特性研究[J]. 电网技术, 2024, 48(1): 434-443.
LEI Xiao, YANG Limin, ZHU Yiying, et al.Digital-analog hybrid simulation platform construction and characteristic research of Baihetan-Jiangsu hybrid cascaded UHVDC project[J]. Power System Technology, 2024, 48(1): 434-443.
[18] 张宁宇, 周前, 刘建坤. 江苏海上、沿海和内陆风电出力及波动特性分析[J]. 中国电力, 2020, 53(7): 18-23.
ZHANG Ningyu, ZHOU Qian, LIU Jiankun.Output and fluctuation characteristics of off-shore, coastal and inland wind farms in Jiangsu Province[J]. Electric Power, 2020, 53(7): 18-23.
[19] 梁远升, 徐征, 李海锋, 等. 计及新能源出力不确定性的短路特征分析模型与继电保护实时风险评估[J]. 电力建设, 2025, 46(2): 113-124.
LIANG Yuansheng, XU Zheng, LI Haifeng, et al.Short-circuit characteristic analysis model and real-time risk assessment of protection considering uncertainties of new energy output[J]. Electric Power Construction, 2025, 46(2): 113-124.
[20] 李周, 詹若培, 李亚州, 等. 真双极多端柔性直流输电系统多目标协同控制策略[J]. 电力系统自动化, 2020, 44(19): 101-110.
LI Zhou, ZHAN Ruopei, LI Yazhou, et al.Multi-objective coordinated control strategy for real bipolar VSC-MTDC transmission system[J]. Automation of Electric Power Systems, 2020, 44(19): 101-110.
[21] 刘文胜, 王海云, 黄新民, 等. 真双极VSC-MTDC风场侧换流站软切换控制策略[J]. 电力科学与技术学报, 2023, 38(5): 87-97.
LIU Wensheng, WANG Haiyun, HUANG Xinmin, et al.Soft switching control strategy of true bipolar VSC-MTDC wind field side converter station[J]. Journal of Electric Power Science and Technology, 2023, 38(5): 87-97.
[22] 江守其, 李国庆, 辛业春, 等. 风电经架空线双极MMC-HVDC并网的直流故障穿越协调控制策略[J]. 中国电机工程学报, 2020, 40(11): 3516-3527.
JIANG Shouqi, LI Guoqing, XIN Yechun, et al.Coordinated control strategies for DC fault ride-through of wind power integration via bipolar MMC-HVDC overhead lines[J]. Proceedings of the CSEE, 2020, 40(11): 3516-3527.
[23] 李国庆, 张林, 江守其, 等. 风电经双极混合型MMC-HVDC并网的直流故障穿越协调控制策略[J]. 电力系统保护与控制, 2021, 49(10): 27-36.
LI Guoqing, ZHANG Lin, JIANG Shouqi, et al.Coordinated control strategies for DC fault ride-through of wind power integration via bipolar hybrid MMC-HVDC overhead lines[J]. Power System Protection and Control, 2021, 49(10): 27-36.
[24] 孙银锋, 刘宇晗, 郭宇航, 等. 基于分散式储能的风电柔直并网直流故障穿越协调控制[J]. 工程科学与技术, 2023, 55(1): 35-47.
SUN Yinfeng, LIU Yuhan, GUO Yuhang, et al.DC fault ride through coordinated control of wind power flexible direct grid connection based on decentralized energy storage[J]. Advanced Engineering Sciences, 2023, 55(1): 35-47.
[25] 孙银锋, 路玉泽, 刘宇晗, 等. 基于储能的风电柔直并网系统直流故障穿越协调控制策略[J]. 电力系统自动化, 2023, 47(3): 122-132.
SUN Yinfeng, LU Yuze, LIU Yuhan, et al.Coordinated control strategy of DC fault ride-through for flexible DC grid-connected system of wind power based on energy storage[J]. Automation of Electric Power Systems, 2023, 47(3): 122-132.
[26] 王振浩, 李金伦, 王欣铎, 等. 风电接入真双极MMC-MTDC系统直流故障穿越协调控制策略[J]. 电力建设, 2022, 43(10): 26-36.
WANG Zhenhao, LI Jinlun, WANG Xinduo, et al.DC fault ride-through coordinated control strategies for bipolar MMC-MTDC system with wind power connected[J]. Electric Power Construction, 2022, 43(10): 26-36.
[27] WANG S S, QIN S M, YANG P B, et al.Research on the new topology and coordinated control strategy of renewable power generation connected MMC-based DC power grid integration system[J]. Symmetry, 2021, 13(10): 1965.
[28] 梅念, 苑宾, 李探, 等. 接入孤岛新能源电场的双极柔直换流站控制策略[J]. 电网技术, 2018, 42(11): 3575-3582.
MEI Nian, YUAN Bin, LI Tan, et al.Study on control strategy of bipolar VSC station connected to islanded renewable power plant[J]. Power System Technology, 2018, 42(11): 3575-3582.
[29] 胡兆庆, 董云龙, 王佳成, 等. 高压柔性直流电网多端控制系统架构和控制策略[J]. 全球能源互联网, 2018, 1(4): 461-470.
HU Zhaoqing, DONG Yunlong, WANG Jiacheng, et al.Flexible DC grid multi-terminal control and protection system framework and control strategy[J]. Journal of Global Energy Interconnection, 2018, 1(4): 461-470.
[30] 风电场接入电力系统技术规定第1部分:陆上风电: GB/T 19963 GB/T 19963.1—2021[S]. 北京: 中国标准出版社, 2021.
Technical specification for connecting wind farm to power system: Part 1: On shore wind power: GB/T 19963 Part 1: On shore wind power: GB/T 19963.1—2021[S]. Beijing: Standards Press of China, 2021.
[31] 关晓羽, 汪娟娟, 何启皓. 高压直流稳态工况无功调节能力[J]. 电力工程技术, 2024, 43(1): 100-107.
GUAN Xiaoyu, WANG Juanjuan, HE Qihao.Reactive power adjustable ability of HVDC under steady state condition[J]. Electric Power Engineering Technology, 2024, 43(1): 100-107.
[32] 雷家兴, 周浩然, 冯双, 等. 新能源发电基地经二极管整流送出系统的受端换流站控制策略[J]. 中国电机工程学报, 2025, 45(16): 6461-6473.
LEI Jiaxing, ZHOU Haoran, FENG Shuang, et al.Control strategy of the receiving end converter station of the renewable energy generation base through the diode rectifier transmission system[J]. Proceedings of the CSEE, 2025, 45(16): 6461-6473.
[33] 张兆洋, 高丙团, 索之闻, 等. 柔性直流输电系统支撑新能源送端频率稳定的自适应双下垂控制策略[J]. 电力建设, 2025, 46(5): 1-11.
ZHANG Zhaoyang, GAO Bingtuan, SUO Zhiwen, et al.Adaptive dual droop control strategy of VSC-HVDC for supporting frequency stability of sending-end system with renewable energy[J]. Electric Power Construction, 2025, 46(5): 1-11.

基金

国家自然科学基金项目(U216620017)

PDF(1692 KB)

Accesses

Citation

Detail

段落导航
相关文章
AI小编
你好!我是《电力建设》AI小编,有什么可以帮您的吗?

/