PDF(1073 KB)
PDF(1073 KB)
PDF(1073 KB)
考虑节点碳排放强度的输配协同多目标最优潮流
Multi-Objective Optimal Power Flow of Integrated Transmission and Distribution Network Considering Node Carbon Emission Intensity
【目的】 在“双碳”目标稳步推进、分布式能源广泛接入背景下,由于输配电网潮流分布变化,其原有等值模型计算精度和计算效率受到挑战,同时碳排放如何纳入输配运行优化也成为有待探讨的课题。【方法】 为应对以上挑战,首先提出一种基于异构分解算法的输配协同分布式最优潮流模型,然后采用碳流理论计算节点碳排放强度,形成了同时考虑经济性与节点碳排放的多目标最优潮流模型,最后提出了基于满意度函数求解思想的多目标线性加权处理方法。【结果】 提出的基于满意度函数求解思想的线性加权模型能使输配协同潮流求解时间减少超过50%;所引入的节点碳排放强度及多目标优化模型,能够在发电成本可接受的范围内,使得系统碳排放显著降低。【结论】 提出的分布式输配协同最优潮流模型,能够在保障输配电网各自信息安全与计算精度的同时,提升最优潮流计算的收敛性,解决了异构分解算法难以对max-min类目标函数构造增广拉格朗日函数的问题,降低了求解难度,并充分利用配电侧高比例分布式电源实现经济效益和环境效益的均衡。
[Objective] Under the background of the steady progress of the "dual carbon" plan and the widespread access of distributed energy, the calculation accuracy and efficiency of the original equivalent model are challenged due to the changes in the power flow distribution of the transmission and distribution network, and how to incorporate carbon emissions into the optimization of transmission and distribution operation must be discussed. [Methods] To address these challenges, a collaborative distributed optimal power flow model based on a heterogeneous decomposition algorithm was proposed. Carbon flow theory was used to calculate the node carbon emission intensity, and a multi-objective optimal power flow model was developed considering both economic and node carbon emissions. A multi-objective linear weighted processing method based on a satisfaction function was proposed. [Results] A numerical example was provided to verify that the proposed linear weighted model based on the satisfaction function solution concept can reduce the solving time of the collaborative transmission and distribution power flow by more than 50%. The introduced node carbon emission intensity and multi-objective optimization model can significantly reduce the system carbon emissions within an acceptable range of power generation costs. [Conclusions] The proposed distributed transmission and distribution collaborative optimal power flow model not only ensures the information security and calculation accuracy of the transmission and distribution networks, but also improves the convergence of the optimal power flow calculation. This solves the problem that the heterogeneous decomposition algorithm makes it difficult to construct an extended Lagrange function for the max-min class objective function and reduces the difficulty of solving it. It makes use of the distribution side of the high proportion of the distributed power supply to achieve a balance between economic and environmental benefits.
多目标优化 / 最优潮流 / 碳流理论 / 输配协同 / 异构分解法
multi-objective optimization / optimal power flow / carbon flow theory / coordination of transmission and distribution / heterogeneous decomposition algorithm
| [1] |
黄铭浩, 陈一丰, 董树锋. 基于安德森加速的输配协同低碳最优潮流[J]. 电网技术, 2023, 47(8):3132-3144.
|
| [2] |
赵鹏臻, 谢宁, 殷佳敏, 等. 适应新型电力系统发展趋势的配电网集中-分布式形态及其分层分区方法[J]. 智慧电力, 2023, 51 (01): 94-100.
|
| [3] |
陈一丰, 唐坤杰, 董树锋, 等. 输配一体化潮流计算收敛性分析及提升方法[J]. 中国电机工程学报, 2022, 42(20): 7524-7535.
|
| [4] |
|
| [5] |
唐坤杰. 输配一体化系统分析和协同优化调度关键技术[D]. 杭州: 浙江大学, 2023.
|
| [6] |
唐坤杰, 董树锋, 朱炳铨, 等. 大规模输配一体化系统牛顿法潮流计算性能分析及改进方法[J]. 电力系统自动化, 2019, 43(6): 92-99.
|
| [7] |
王淼, 常乃超, 王磊, 等. 基于调控云的网络分析服务架构[J]. 电网技术, 2018, 42(8): 2659-2665.
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
张旭, 王洪涛. 高比例可再生能源电力系统的输配协同优化调度方法[J]. 电力系统自动化, 2019, 43(3): 67-75, 115.
|
| [12] |
赵冬梅, 王浩翔, 陶然. 基于改进交替方向乘子法的输配电网分散协调鲁棒优化调度模型[J]. 电网技术, 2023, 47(3): 1138-1150.
|
| [13] |
|
| [14] |
|
| [15] |
国网能源研究院有限公司. 中国能源电力发展展望-2020[M]. 北京: 中国电力出版社, 2020.
|
| [16] |
张庆, 王涛, 李川. 计及柔性负荷和碳流的园区综合能源系统优化运行模型研究[J]. 智慧电力, 2024, 52(6): 54-61.
|
| [17] |
刘天蔚, 边晓燕, 吴珊, 等. 电力系统碳排放核算综述与展望[J]. 电力系统保护与控制, 2024, 52(4): 176-187.
|
| [18] |
魏伟, 叶利, 方毅, 等. 考虑碳排放配额和碳交易的新能源电力系统日前优化调度[J]. 电网与清洁能源, 2024, 40(1): 130-136.
|
| [19] |
于东民, 王晓鹏, 孙钦斐, 等. 基于VPP碳流计算的多目标多时间尺度优化调度[J]. 智慧电力, 2024, 52(1): 30-38.
|
| [20] |
李亚峰, 王维庆. 考虑阶梯碳交易机制的含混氢天然气综合能源系统容量配置[J]. 电力科学与技术学报, 2023, 38(6): 237-247.
|
| [21] |
单思珂, 刘含笑, 刘美玲, 等. 我国火电行业碳足迹评估综述[J]. 发电技术, 2024, 45(4): 575-589.
目的 在“双碳”目标背景下,火电面临着巨大的减排压力。火电碳足迹评价能直观地表现火电的生命周期温室气体排放量,帮助挖掘减碳潜力。为此,对火电碳足迹评估的研究现状进行了综述。 方法 介绍了目前火电碳足迹评价依据的主要标准和方法,并对火电碳足迹评价流程进行了概述。综述了评价流程中存在的差异性问题并给出了部分建议。根据工艺流程将生命周期分为上游、核心和下游3个环节,由于核心环节碳排放集中度极高,部分情况下可以忽略燃煤电厂的建造、退役和电力输送环节的碳足迹。 结论 不同类型火力发电的生命周期相似,但垃圾焚烧发电碳足迹不包括生活垃圾的获取过程。无论哪种火电形式,在缺乏实测排放因子的情况下,建议排放因子选取国内外已发布的标准、文献和数据库的缺省值。
Objectives Under the background of the “double-carbon” target, thermal power is facing great pressure to reduce emissions. Thermal power carbon footprint evaluation can directly show the greenhouse gas emissions of thermal power and help tap the potential of carbon reduction. Therefore, the research status of thermal power carbon footprint assessment was reviewed. Methods This paper introduced the main standards and methods for thermal power footprint evaluation, and summarized the thermal power footprint evaluation process. The differences in the evaluation process were reviewed and some suggestions were given. The life cycle is divided into upstream, core and downstream. According to the high concentration of carbon emissions in the core links, the carbon footprint of the construction, decommissioning and power transmission of coal-fired power plants can be ignored in some cases. Conclusions The life cycle of different types of thermal power generation is similar, but the carbon footprint of waste incineration power generation does not include the acquisition process of domestic waste. Regardless of the form of thermal power, in the absence of measured emission factors, it is recommended that the emission factors select the default values of the published standards, literature and databases at home and abroad. |
| [22] |
张智刚, 康重庆. 碳中和目标下构建新型电力系统的挑战与展望[J]. 中国电机工程学报, 2022, 42(8): 2806-2818.
|
| [23] |
侯金鸣, 孙蔚, 肖晋宇, 等. 电力系统关键技术进步与低碳转型的协同优化[J]. 电力系统自动化, 2022, 46(13): 1-9.
|
| [24] |
康重庆, 杜尔顺, 李姚旺, 等. 新型电力系统的 “碳视角”: 科学问题与研究框架[J]. 电网技术, 2022, 46(3): 821-833.
|
| [25] |
|
| [26] |
汪超群, 陈懿, 文福拴, 等. 电力系统碳排放流理论改进与完善[J]. 电网技术, 2022, 46(5): 1683-1691.
|
| [27] |
|
| [28] |
|
| [29] |
贺莉, 刘庆怀. 多目标优化理论与连续化方法[M]. 北京: 科学出版社, 2015.
|
| [30] |
吴鸣, 徐斌, 季宇, 等. 输配协同分布式电源最大接入容量计算方法[J]. 电网技术, 2019, 43(11): 3883-3889.
|
AI小编
/
| 〈 |
|
〉 |