基于变效率压气机的AA-CAES变工况性能分析

庞永超,韩中合

电力建设 ›› 2016, Vol. 37 ›› Issue (8) : 38.

PDF(559 KB)
PDF(559 KB)
电力建设 ›› 2016, Vol. 37 ›› Issue (8) : 38. DOI: 10.3969/j.issn.1000-7229.2016.08.006
储能新技术

基于变效率压气机的AA-CAES变工况性能分析

  • 庞永超,韩中合
作者信息 +

Off-Design Performance Analysis of AA-CAES Based on Variable Efficiency Compressor

  • PANG Yongchao,HAN Zhonghe
Author information +
文章历史 +

摘要

先进绝热压缩空气储能系统(advanced adiabatic compressed air energy storage system,AA-CAES)是一种清洁、环保的大规模储能技术,能够为可再生能源并网及电网调峰提供新的解决方案。为了深入研究压气机模型对变工况下AA-CAES系统运行性能的影响,本文在传统模型的基础上添加了压气机效率模型。求解系统模型发现:相对于储气室最高压比,换热器效能对储能效率的影响较大,换热器效能每提高0.05,储能效率平均提高2.9%;随着储气室最高压比的上升,储能密度近似呈线性增加;AA-CAES系统在储能阶段,稳定运行的前两级压气机功率保持不变,非稳定运行的第3级压气机功率随储气室压比的升高而逐渐增大,储能阶段结束时第3级压气机耗功最多。

Abstract

Advanced adiabatic compressed air energy storage system (AA-CAES) is a clean and environmentally-friendly large-scale energy storage technology, which provides a new solution for renewable energy grid and power peaking. In order to accurately study the impact of compressor on the operating performance of AA-CAES system under variable condition, this paper adds a compressor efficiency model to the traditional model. The results show that compared with the maximum pressure ratio of the gas storage room, the efficiency of heat exchanger has a great influence on the energy storage efficiency. As the heat exchanger efficiency increases by 5 percent, theres an average growth of 2.9% in storage efficiency. The energy density increases linearly with the increased gas storage maximum pressure ratio. During the energy storage stage, the power of the former two-stage compressor in AA-CAES system which operates stably is unchanged, but the power of the third unstable compressor is gradually increased with the gas storage pressure ratio, and the third stage compressor consumes the most energy at the end of the process.

关键词

压缩空气储能(CAES) / 变效率压气机 / 热力学模型 / 变工况 / 储能效率

Key words

compressed air energy storage system(CAES) / variable efficiency compressor / thermodynamic model / variable condition / energy storage efficiency

引用本文

导出引用
庞永超,韩中合. 基于变效率压气机的AA-CAES变工况性能分析[J]. 电力建设. 2016, 37(8): 38 https://doi.org/10.3969/j.issn.1000-7229.2016.08.006
PANG Yongchao,HAN Zhonghe. Off-Design Performance Analysis of AA-CAES Based on Variable Efficiency Compressor[J]. Electric Power Construction. 2016, 37(8): 38 https://doi.org/10.3969/j.issn.1000-7229.2016.08.006
中图分类号: TM 919   

参考文献

[1]刘斌, 陈来军, 梅生伟, 等. 多级回热式压缩空气储能系统效率评估方法[J]. 电工电能新技术, 2014, 33(8): 1-6. LIU Bin, CHEN Laijun, MEI Shengwei et al. Cycle efficiency evaluation method of multi-stage RCAES system[J]. Advanced Technology of Electrical Engineering and Energy, 2014, 33(8): 1-6. [2]程时杰. 大规模储能技术在电力系统中的应用前景分析[J]. 电力系统自动化, 2013, 37(1): 3-8. CHENG Shijie. An analysis of prospects for application of large-scale energy storage technology in power systems[J]. Automation of Electric Power Systems, 2013, 37(1): 3-8. [3]SUCCAR S, WILLIAMS R H. Compressed air energy storage: theory, resources, and applications for wind power[R]. PEI, 2008: 81. [4]张伟德, 徐钢, 刘文毅, 等. 典型压缩空气蓄能 (CAES) 电站热力学分析与系统优化[J]. 现代电力, 2013,30(2): 41-47. ZHANG Weide, XU Gang, LIU Wenyi, et al. Thermodynamic analysis and optimization of a typical compressed air energy storage (CAES) power plant[J]. Modern Electric Power, 2013,30(2): 41-47. [5]HADJIPASCHALIS I, POULLIKKAS A, EFTHIMIOU V. Overview of current and future energy storage technologies for electric power applications[J]. Renewable and Sustainable Energy Reviews, 2009, 13(6): 1513-1522. [6]张新敬, 陈海生, 刘金超, 等. 压缩空气储能技术研究进展[J]. 储能科学与技术, 2012,1(1): 26-40. ZHANG Xinjing, CHEN Haisheng, LIU Jinchao, et al. Research progress in compressed air energy storage system: a review[J]. Energy Storage Science and Technology, 2012,1(1): 26-40. [7]张远, 杨科, 李雪梅, 等. 基于先进绝热压缩空气储能的冷热电联产系统[J]. 工程热物理学报, 2013, 34(11): 1991-1996. ZHANG Yuan, YANG Ke , LI Xuemei, et al. A combined cooling, heating and power (cchp) system based on advanced adiabatic compressed air energy storage (AA-CAES) technology[J]. Journal of Engineering Thermophysics, 2013, 34(11): 1991-1996. [8]ZUNFT S, JAKIEL C, KOLLER M, et al. Adiabatic compressed air energy storage for the grid integration of wind power[C]// Proceedings of the 6th International Workshop on Large Scale Integration of Wind Power and Transmission Networks for Offshore, Windfarms. Delft, the Netherlands, 2006:346-351. [9]BULLOUGH C, GATZEN C, JAKIEL C, et al. Advanced adiabatic compressed air energy storage for the integration of wind energy[C]//Proceedings of the European Wind Energy Conference. London, UK, 2004:22-25. [10]ZHANG Yuan, YANG Ke, LI Xuemei, et al. The thermodynamic effect of thermal energy storage on compressed air energy storage system[J]. Renewable Energy, 2013, 50(2): 227-235. [11]JUBEH N M, NAJJAR Y S H. Green solution for power generation by adoption of adiabatic CAES system[J]. Applied Thermal Engineering, 2012, 44(44): 85-89. [12]郭欢, 许剑, 陈海生, 等. 一种定压运行 AA-CAES 的系统效率分析[J]. 热能动力工程, 2013, 28(5): 540-546. GUO Huan, XU Jian, CHEN Haisheng, et al. Analysis of the efficiency of a AA-CAES system operating at a constant pressure[J]. Journal of Engineering for Thermal Energy & Power, 2013, 28(5): 540-546. [13]GRAZZINI G, MILAZZO A.Thermodynamic analysis of CAES/TES systems for renewable energy plants[J]. Renewable Energy,2008,33(9):1998-2006. [14]KUSHNIR R, ULLMANN A, DAYAN A. Thermodynamic models for the temperature and pressure variations within adiabatic caverns of compressed air energy storage plants[J]. Journal of Energy Resources Technology, 2012, 134(2): 547-549. [15]HARTMANN N, VHRINGER O, KRUCK C, et al. Simulation and analysis of different adiabatic compressed air energy storage plant configurations[J]. Applied Energy, 2012, 93(5): 541-548. [16]ZHAO P, WANG J, DAI Y. Thermodynamic analysis of an integrated energy system based on compressed air energy storage (CAES) system and Kalina cycle[J]. Energy Conversion and Management, 2015, 98(1): 161-172. [17]KIM Y M, FAVRAT D. Energy and exergy analysis of a micro-compressed air energy storage and air cycle heating and cooling system[J]. Energy, 2010, 35(1): 213-220. [18]钟浩. 离心压缩机入门与精通[M]. 北京:机械工业出版社, 2014. ZHONG Hao. Centrifugal compressor entry and master [M]. Beijing:China Machine Press, 2014.

基金

国家科技支撑计划项目(2014BAA06B01)

PDF(559 KB)

Accesses

Citation

Detail

段落导航
相关文章
AI小编
你好!我是《电力建设》AI小编,有什么可以帮您的吗?

/