优化BP神经网络在垃圾发电厂选址中的应用

郑燕 赵彪

电力建设 ›› 2011, Vol. 32 ›› Issue (6) : 67-69.

PDF(605 KB)
PDF(605 KB)
电力建设 ›› 2011, Vol. 32 ›› Issue (6) : 67-69.
发电技术

优化BP神经网络在垃圾发电厂选址中的应用

  • 郑燕1,赵彪2
作者信息 +

Optimizing BP Neural Network Used in Refuse Incineration Power Plant Addressing

Author information +
文章历史 +

摘要

垃圾发电厂选址的影响因素多、社会影响大。基于主成分分析法和改进反向传输(back propagation,BP)神经网络,提出一种垃圾发电厂选址优化算法。算法采用主成分分析选取学习样本,使少量样本包含尽可能多的样本特性;应用Levenberg-Marquardt反向传播算法对神经网络进行训练,加快了神经网络训练速度。

Abstract

The site selection of refuse incineration power plant has many influencing factor and is of severe social impact. In this paper,an optimizing algorithm for site selection of refuse incineration power plant is provided based on principal component analysis and back propagation (BP) neural network. The samples are selected by principal component analysis,as a result that a few samples can reflect as many sample characteristics as possible. The neural network is trained by Levenberg-Marquardt BP algorithm,and the training speed is improved.

关键词

垃圾发电厂 / 选址 / 神经网络 / 主成分分析法

引用本文

导出引用
郑燕 赵彪. 优化BP神经网络在垃圾发电厂选址中的应用[J]. 电力建设. 2011, 32(6): 67-69
Optimizing BP Neural Network Used in Refuse Incineration Power Plant Addressing[J]. Electric Power Construction. 2011, 32(6): 67-69

PDF(605 KB)

Accesses

Citation

Detail

段落导航
相关文章
AI小编
你好!我是《电力建设》AI小编,有什么可以帮您的吗?

/