基于EEMD-SVM模型的电网工程设备价格预测

卢艳超,温卫宁,赵彪,郑燕,史雪飞

电力建设 ›› 2013, Vol. 34 ›› Issue (1) : 25-30.

PDF(563 KB)
PDF(563 KB)
电力建设 ›› 2013, Vol. 34 ›› Issue (1) : 25-30.
规划设计

基于EEMD-SVM模型的电网工程设备价格预测

  •   卢艳超,温卫宁,赵彪,郑燕,史雪飞
作者信息 +

Price Forecast of Power Grid Equipment Based on EEMD-SVM Model

  • LU Yanchao, WEN Weining, ZHAO Biao, ZHENG Yan, SHI Xuefei
Author information +
文章历史 +

摘要

由于电网工程设备价格具有非线性和非平稳性特征,导致其价格预测难度大、预测精度低,针对这一问题,建立了EEMD-SVM预测模型。利用集合经验模态分解理论(ensemble empirical mode decomposition,EEMD)对经验模态分解理论(empirical mode decomposition,EMD)进行了改进,通过EEMD将历史价格分解为平稳的、周期波动的若干价格分量,并以此作为输入,对各分量进行基于支持向量机(support vector machine,SVM)的价格预测,最后将各预测分量叠加得到预测值。以220 kVA柱式断路器的历史数据为样本,通过EMD-SVM与EEMD-SVM的预测结果进行对比及误差分析,证明EEMD-SVM比EMD-SVM的预测精度更高,其预测结果对于工程造价管控和设备招投标具有一定的参考价值。

Abstract

As the price of power grid equipment is nonlinear and non-stable, which leads to big difficulty and low accuracy of forecast, the model of ensemble empirical mode decomposition (EEMD) and support vector machine (SVM) has been built. The empirical mode decomposition (EMD) is improved by EEMD. The history price is divided into several smooth and periodically fluctuated components by EEMD, which is used to forecast with SVM as an input. Finally, the superposition value of forecasted components has been gained as the predictive value of price. Taking the history data of 220 kVA column circuit breaker as samples, the prediction results of EMD-SVM and EEMD-SVM are compared and the errors are analyzed. The results show that the prediction accuracy of EEMD-SVM is better than that of EMD-SVM, which can make references to project cost control and equipment bidding to some extent.

关键词

电网工程设备价格 / 集合经验模态分解 / 支持向量机 / 预测

Key words

price of power grid price / ensemble empirical mode decomposition / support vector machine / forecast

引用本文

导出引用
卢艳超,温卫宁,赵彪,郑燕,史雪飞. 基于EEMD-SVM模型的电网工程设备价格预测[J]. 电力建设. 2013, 34(1): 25-30
LU Yanchao, WEN Weining, ZHAO Biao, ZHENG Yan, SHI Xuefei. Price Forecast of Power Grid Equipment Based on EEMD-SVM Model[J]. Electric Power Construction. 2013, 34(1): 25-30

参考文献

[1]李方吉,李志国.模糊指数平滑法预测电力负荷原理研究[J].电力建设,1993,14(3):1-5.

[2]熊高峰,韩鹏.时间序列分解在短期电价分析与预测中的应用[J].电力系统及其自动化学报,2011, 23 (3):95-100.

[3]鲍永胜,吴振生.基于SVM的时间序列短期风速预测[J].中国电力,2011, 44 (9):61-64.

[4]赵渊,张夏菲.非参数自回归方法在短期电力负荷预测中的应用[J].高电压技术,2011, 37 (2):429-435.

[5]廖峰,刘清良.基于改进灰色模型与综合气象因素的母线负荷预测[J].电网技术,2011, 35 (10):183-188.

[6]Huang N E,Shen Z,Long S R.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary

time series analysis[J].Proceedings of The Royal Society Soc Lond,1998,454(1971):903-995.

[7]Vapnik V N.The nature of statistical learning theory[M].New York:Springer-Verlag,2000:35-39.

[8]叶林,刘鹏.基于经验模态分解和支持向量机的短期风电功率组合预测模型[J].中国电机工程学报,2011,31(5):102-108.

[9]Burges C J C. A tutorial on support vector machines for pattern recognition [J]. Data Mining and Know ledge Discovery,

1998(2): 121-167.

[10]Afzel Noore, Liang Tian. A novel approach for short-term load forecasting using support vector machines [J].

International Journal of Neural Systems, 2011, 14 (5): 2 342-2 347.

[11]Suykens K, Vandewalle J. Recurrent least squares support vector machines [J]. IEEE Trans on Circ its and Systems,

2009, 47 (7): 1 803-1 809.

[12]梁建武,陈祖权.短期负荷预测的聚类组合和支持向量机方法[J].电力系统及其自动化学报,2011, 23 (1):34-38.

[13]张通,张骏.基于混合AGO-SVM的高速公路短时交通量预测研究[J].交通运输系统工程与信息,2011,11(1):157-162.

[14]Stephen C P,Robert J G, Jonathan W E. Application of the Hilbert-Huang Transform to the Analysis of Molecular Dynamics

Simulations[J]. Journal of Physical Chemistry, 2003, 107: 4 869-4 876.

[15]Huang N E, Shen Z, Long S R,et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-

stationary time series analysis [J]. Ann Rev Fluid Mech, 1999, 31(11):321-325.

[16]Huang N E. A new view of nonlinear water waves-the Hilbert spectrum [J]. Ann Rev Fluid Mech, 1999, 31(1):417-422.

[17]杨云飞. 基于EMD分解技术的不同市场原油价格相关性分析及预测研究[D].湖北:华中科技大学,2011.

[18]刘岱,庞松岭.基于EEMD与动态神经网络的短期负荷预测[J].东北电力大学学报,2009,29(6):20-26.

基金

国家电网公司科技项目(KB4410110002)


PDF(563 KB)

Accesses

Citation

Detail

段落导航
相关文章
AI小编
你好!我是《电力建设》AI小编,有什么可以帮您的吗?

/