杨甲甲, 刘国龙, 赵俊华, 文福拴, 董朝阳
工业负荷不同于其他电力负荷, 受气温、时间、人口等外部因素的影响较小, 其功率需求主要由相关企业的生产计划来决定。在电力市场环境下, 准确的负荷预测有助于工业用户更好地制定电力交易策略, 从而增加收益。在此背景下, 基于改进的长短期记忆(long short term memory, LSTM)深度学习网络模型, 提出了一种工业负荷短期预测算法。首先,在网络层次上构建层数更多即网络层次更深的LSTM深度学习负荷预测模型。接着, 在每个LSTM单元构成的隐含层中, 采用Dropout技术对神经元进行随机概率失活, 并通过正则化有效避免深度学习过拟合问题并改善了模型性能。然后, 采用真实的工业用户历史负荷数据对所提算法进行测试, 并与已有的短期负荷预测算法进行对比, 包括自回归滑动平均模型 (auto-regressive and moving average model, ARMA), 最邻近回归算法 (K nearest neighbor regression, KNN) 以及支持向量回归算法 (support vector regression, SVR)。仿真结果表明, 所提深度学习工业负荷短期预测算法相比于一些现有方法, 其预测准确度有明显提升,预测结果的平均绝对百分误差(mean absolute percentage error, MAPE)在9%以下。