Monthly
ISSN 1000-7229
CN 11-2583/TM
ELECTRIC POWER CONSTRUCTION ›› 2022, Vol. 43 ›› Issue (2): 63-69.doi: 10.12204/j.issn.1000-7229.2022.02.008
• Smart Grid • Previous Articles Next Articles
SUN Lixia(), PENG Jiajie(
), TIAN Yiyun(
), CHEN Xinling(
), YUAN Huan(
)
Received:
2021-07-22
Online:
2022-02-01
Published:
2022-03-24
Contact:
SUN Lixia
E-mail:Lixiasun@hhu.edu.cn;921939688@qq.com;1450313963@qq.com;1803466824@qq.com;1829036536@qq.com
Supported by:
CLC Number:
SUN Lixia, PENG Jiajie, TIAN Yiyun, CHEN Xinling, YUAN Huan. Multi-task Transient Stability Assessment Based on Sub-layer of Hybrid Gated Recurrent Unit[J]. ELECTRIC POWER CONSTRUCTION, 2022, 43(2): 63-69.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cepc.com.cn/EN/10.12204/j.issn.1000-7229.2022.02.008
[1] | KUNDUR P. Power system stability and control[M]. New York, USA: McGraw-Hill, 1994. |
[2] |
IEEE/CIGRE Joint Task Force on Stability Terms and Definitions. Definition and classification of power system stability[J]. IEEE Transactions on Power Systems, 2004, 19(3):1387-1401.
doi: 10.1109/TPWRS.2004.825981 URL |
[3] | 谢小荣, 贺静波, 毛航银, 等. “双高”电力系统稳定性的新问题及分类探讨[J]. 中国电机工程学报, 2021, 41(2):461-475. |
XIE Xiaorong, HE Jingbo, MAO Hangyin, et al. New issues and classification of power system stability with high shares of renewables and power electronics[J]. Proceedings of the CSEE, 2021, 41(2):461-475. | |
[4] | 周悦, 谭本东, 李淼, 等. 基于深度学习的电力系统暂态稳定评估方法[J]. 电力建设, 2018, 39(2):103-108. |
ZHOU Yue, TAN Bendong, LI Miao, et al. Transient stability assessment of power system based on deep learning technology[J]. Electric Power Construction, 2018, 39(2):103-108. | |
[5] | 孙黎霞, 白景涛, 周照宇, 等. 基于双向长短期记忆网络的电力系统暂态稳定评估[J]. 电力系统自动化, 2020, 44(13):64-72. |
SUN Lixia, BAI Jingtao, ZHOU Zhaoyu, et al. Transient stability assessment of power system based on bi-directional long-short-term memory network[J]. Automation of Electric Power Systems, 2020, 44(13):64-72. | |
[6] | 高昆仑, 杨帅, 刘思言, 等. 基于一维卷积神经网络的电力系统暂态稳定评估[J]. 电力系统自动化, 2019, 43(12):18-26. |
GAO Kunlun, YANG Shuai, LIU Siyan, et al. Transient stability assessment for power system based on one-dimensional convolutional neural network[J]. Automation of Electric Power Systems, 2019, 43(12):18-26. | |
[7] | 田芳, 周孝信, 史东宇, 等. 基于卷积神经网络的电力系统暂态稳定预防控制方法[J]. 电力系统保护与控制, 2020, 48(18):1-8. |
TIAN Fang, ZHOU Xiaoxin, SHI Dongyu, et al. A preventive control method of power system transient stability based on a convolutional neural network[J]. Power System Protection and Control, 2020, 48(18):1-8. | |
[8] | 周挺, 杨军, 詹祥澎, 等. 一种数据驱动的暂态电压稳定评估方法及其可解释性研究[J]. 电网技术, 2021, 45(11):4416-4425. |
ZHOU Ting, YANG Jun, ZHAN Xiangpeng, et al. A data-driven method for transient voltage stability assessment and its interpretability analysis[J]. Power System Technology, 2021, 45(11):4416-4425. | |
[9] | 朱利鹏, 陆超, 黄河, 等. 基于时序轨迹特征学习的暂态电压稳定评估[J]. 电网技术, 2019, 43(6):1922-1931. |
ZHU Lipeng, LU Chao, HUANG He, et al. Transient voltage stability assessment based on sequential trajectory feature learning[J]. Power System Technology, 2019, 43(6):1922-1931. | |
[10] | 梁修锐, 刘道伟, 杨红英, 等. 数据驱动的电力系统静态电压稳定态势评估[J]. 电力建设, 2020, 41(1):126-132. |
LIANG Xiurui, LIU Daowei, YANG Hongying, et al. Data-driven situation assessment of power system static voltage stability[J]. Electric Power Construction, 2020, 41(1):126-132. | |
[11] | 汤涌. 电力系统电压稳定性分析[M]. 北京: 科学出版社, 2011. |
ZHANG Y, YANG Q. An overview of multi-task learning[J]. National Science Review, 2018, 5(1):30-43. | |
[13] |
GUPTA A, GURRALA G, SASTRY P S. An online power system stability monitoring system using convolutional neural networks[J]. IEEE Transactions on Power Systems, 2019, 34(2):864-872.
doi: 10.1109/TPWRS.2018.2872505 URL |
[14] | 陈庆超, 韩松, 毛钧毅. 采用多层次特征融合 SPP-net 的暂态稳定多任务预测[J/OL]. 控制与决策, 2021:1-10[2021-05-10]. https://doi.org/10.13195/j.kzyjc.2020.1568. |
CHEN Qingchao, HAN Song, MAO Junyi. Multi-task prediction for transient stability using multi-level feature fusion based SPP-net[J/OL]. Control and Decision, 2021:1-10[2021-05-10]. https://doi.org/10.13195/j.kzyjc.2020.1568. | |
[15] | MA J Q, ZHAO Z, YI X Y, et al. Modeling task relationships in multi-task learning with multi-gate mixture-of-experts[C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. London United Kingdom. New York, NY, USA: ACM, 2018: 1930-1939. |
[16] | CHO K, VAN MERRIENBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[J]. Computer Science, 2014: 1406. 1078. |
[17] | 刘取. 电力系统稳定性及发电机励磁控制[M]. 北京: 中国电力出版社, 2007. |
LIU Qu. Power system stability and generator excitation control[M]. Beijing: China Electric Power Press, 2007. | |
[18] | 霍思敏, 王科, 陈震海, 等. 基于轨迹输入特征支持向量机的湖南电网暂态稳定在线识别[J]. 电力系统保护与控制, 2012, 40(18):19-23. |
HUO Simin, WANG Ke, CHEN Zhenhai, et al. Hunan power grid transient stability online detection based on support vector machine with trajectory input features[J]. Power System Protection and Control, 2012, 40(18):19-23. | |
[19] | 力系统安全稳定计算技术规范: DL/T 1234—2013[S]. 北京: 中国电力出版社, 2013. |
Technique specification of power system security and stability calculation:DL/T 1234—2013[S]. Beijing: China Electric Power Press, 2013. | |
[20] | KINGMA D, BA J. Adam: A method for stochastic optimization[EB/OL].(2018-09-01) [2019-12-01]. http:www.oalib.com/paper4068193. |
[21] | SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout: A simple way to prevent neural networks from overfitting[J]. Journal of Machine Learning Research, 2014, 15(1):1929-1958. |
[22] | PAIMA. Energy function analysis for power system stability[M]. Berlin,Germany:Springer Science & Business Media, 2012. |
[23] | ABADI M, BARHAM P, CHEN J, et al. Tensorflow: A system for large-scale machine learning[C]// Proceedings of the 12th USENIX conference on operating systems design and implementation. Savannah, GA, USA, 2016:265-283. |
[24] | CHOLLET F. Keras: Theano-based deep learning library[EB/OL]. (2018-05-09)[2021-05-10]. https://github.com/fchollet/keras. |
[1] | XIAO Falong, WU Yuezhong, SHEN Xuehao, HE Zhenkai, QIN Ye. Intelligent Fault Diagnosis of Substation Equipment on the Basis of Deep Learning and Knowledge Graph [J]. ELECTRIC POWER CONSTRUCTION, 2022, 43(3): 66-74. |
[2] | ZHU Qing, ZHENG Hongjuan, TANG Ziyi, WEI Siya, ZOU Zixiao, WU Xi. Load Scenario Generation of Integrated Energy System Using Generative Adversarial Networks [J]. ELECTRIC POWER CONSTRUCTION, 2021, 42(12): 1-8. |
[3] | TANG Zizhuo, LIU Yang, XU Lixiong, GUO Jiuyi. Imbalanced-Load Pattern Extraction Method Based on Frequency Domain Characteristics of Load Data and LSTM Network [J]. ELECTRIC POWER CONSTRUCTION, 2020, 41(8): 17-24. |
[4] | ZHUANG Jiayi, YANG Guohua, ZHENG Haofeng, WANG Yudong, HU Ruikun, DING Xu. Ultra-short-term Load Forecasting Using Hybrid Neural Network Based on Parallel Multi-model Combination [J]. ELECTRIC POWER CONSTRUCTION, 2020, 41(10): 1-8. |
[5] | XIAO Zeqing, HUA Haochen, CAO Junwei. Overview of the Application of Artificial Intelligence in Energy Internet [J]. Electric Power Construction, 2019, 40(5): 63-70. |
[6] | YANG Yinan, QI Linhai, WANG Hong, SU Linping. Research on Generation Technology of Small Sample Data Based on Generative Adversarial Network [J]. Electric Power Construction, 2019, 40(5): 71-77. |
[7] | ZHOU Yue, TAN Bendong, LI Miao, YANG Xuan, ZHOU Qiangming, ZHANG Zhenxing, TAN Min, YANG Jun . Transient Stability Assessment of Power System Based on Deep Learning Technology [J]. Electric Power Construction, 2018, 39(2): 103-. |
[8] | LIANG Rong, YANG Bo, MA Runze, WU Jian, WU Kuihua, LIN Zhenzhi, WEN Fushuan. Spatial Electric Load Forecasting for Distribution Systems Using Multi-source Information and Deep Belief Network-Deep Neural Network [J]. Electric Power Construction, 2018, 39(10): 12-19. |
[9] | YANG Jiajia, LIU Guolong, ZHAO Junhua, WEN Fushuan, DONG Zhaoyang. A Long Short Term Memory Based Deep Learning Method for Industrial Load Forecasting [J]. Electric Power Construction, 2018, 39(10): 20-27. |
[10] |
SHI Jiaqi,ZHANG Jianhua .
Ultra Short-Term Photovoltaic Refined Forecasting Model Based on Deep Learning
|
[11] | WANG Xiaohui, ZHU Yongli,GUO Fengjuan. Dielectric Loss Angle Identification of Capacitor Based on Synchronous Monitoring and Deep Learning [J]. Electric Power Construction, 2017, 38(5): 76-. |
[12] | SHI Xin, ZHU Yongli. Application of Deep Learning Neural Network in Fault Diagnosis of Power Transformer [J]. ELECTRIC POWER CONSTRUCTION, 2015, 36(12): 116-122. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright @ ELECTRIC POWER CONSTRUCTION Editorial Office
Address: Tower A225, SGCC, Future Science & Technology Park,Beijing, China Postcode:102209 Telephone:010-66602697
Technical support: Beijing Magtech Co.ltd support@magtech.com.cn