• CSCD核心库收录期刊
  • 中文核心期刊
  • 中国科技核心期刊

ELECTRIC POWER CONSTRUCTION ›› 2015, Vol. 36 ›› Issue (4): 38-45.doi: 10.3969/j.issn.1000-7229.2015.04.007

Previous Articles     Next Articles

Optimal Allocation Method of Distributed Energy Storage System in Distribution Network

TANG Wenzuo1, LIANG Wenju1, CUI Rong1, ZENG Rui1, JIA Long2, ZHOU Chuanjie2, HU Zechun2   

  1. 1. Economic & Technology Research Institute, State Grid Chongqing Electric Power Company, Chongqing 401121, China;2. Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
  • Online:2015-04-01

Abstract:

When connected into the distribution network, distributed energy storage system (DESS) can be coordinated with distributed generations (DGs), make up for the negative effects on network safety and economic operation because of DGs’ random outputs, and regulate the power exchange between distribution and main network for peak load shifting. The optimal allocation of DESS connected in distribution network is the basis to bring all these benefits. Therefore, this paper proposed the optimal allocation method for DESS in distribution network. Firstly, the load curve, wind power curve and photovoltaic power curve of typical days were obtained with clustering algorithm to consider the randomness of all the three curves. Secondly, considering the constraints of location, power and the safe operation of distribution network, the multi-period mixed-integer nonlinear optimization model was established with the objective of minimum total investment and operation cost of DESS. Then a two-level optimization method was proposed to solve the model, which used improved genetic algorithm to optimize the DESS allocation scheme at outer layer and optimal power flow algorithm to optimize energy storage charging/discharging of the allocation scheme at inner layer. Finally, a distribution system with wind and photovoltaic power was tested to prove the effectiveness of the proposed method; and the impact of wind and photovoltaic power rating, load demand changes and other factors on the allocation results of DESS were analyzed.

Key words: distributed energy storage system, distribution network, optimal allocation, genetic algorithm, optimal power flow algorithm

CLC Number: