Optimal Configuration of Hydrogen Energy Storage for Wind and Solar Power Stations Considering Electricity-Hydrogen Coupling Under Carbon Neutrality Vision

XU Chuanbo, ZHAO Yunhao, WANG Xiaochen, KE Yiming

Electric Power Construction ›› 2022, Vol. 43 ›› Issue (1) : 10-18.

PDF(4657 KB)
PDF(4657 KB)
Electric Power Construction ›› 2022, Vol. 43 ›› Issue (1) : 10-18. DOI: 10.12204/j.issn.1000-7229.2022.01.002
Energy and Power Technology, Economy and Policies Towards Carbon Peaking and CarbonNeutrality•Hosted by Associate Professor ZHAO Junhua, Dr. QIU Jing and Professor WEN Fushuan•

Optimal Configuration of Hydrogen Energy Storage for Wind and Solar Power Stations Considering Electricity-Hydrogen Coupling Under Carbon Neutrality Vision

Author information +
History +

Abstract

Due to the fluctuation and intermittence of new energy output, its direct access to the grid will affect the safe and stable operation of the power system. In order to promote renewable energy consumption, developing hydrogen storage system coupled with electricity and hydrogen is an effective way. For this reason, aiming at the optimal configuration of hydrogen storage capacity of new energy power station at the power generation side, a multi-objective optimal configuration model of hydrogen energy storage is established with the minimum investment cost of hydrogen energy storage, the minimum system cumulative tracking plan error and the maximum increment of carbon dioxide emission reduction as the objective function, and the abandonment rate and the actual site area as the constraints. The model is solved by the combination of genetic algorithm with elitist strategy and entropy weight method. Finally, the effectiveness of the proposed model and algorithm is verified by a case study in Gansu Province, China. The results show that the optimal number of 200 kW electrolytic cells, 6 kg hydrogen storage tanks and 200 kW fuel cells are 268, 291 and 222, respectively. The hydrogen storage system can actively respond to the dispatching command and greatly reduce the power abandonment rate.

Key words

generation side / wind and solar power station / hydrogen energy storage / capacity configuration

Cite this article

Download Citations
Chuanbo XU , Yunhao ZHAO , Xiaochen WANG , et al. Optimal Configuration of Hydrogen Energy Storage for Wind and Solar Power Stations Considering Electricity-Hydrogen Coupling Under Carbon Neutrality Vision[J]. Electric Power Construction. 2022, 43(1): 10-18 https://doi.org/10.12204/j.issn.1000-7229.2022.01.002

References

[1]
ARBABZADEH M, SIOSHANSI R, JOHNSON J X, et al. The role of energy storage in deep decarbonization of electricity production[J]. Nature Communications, 2019, 10: 3413.
[2]
赵东元, 胡楠, 傅靖, 等. 提升新能源电力系统灵活性的中国实践及发展路径研究[J]. 电力系统保护与控制, 2020, 48(24):1-8.
ZHAO Dongyuan, HU Nan, FU Jing, et al. Research on the practice and road map of enhancing the flexibility of a new generation power system in China[J]. Power System Protection and Control, 2020, 48(24):1-8.
[3]
CHEN W, LI G D, PEI A, et al. A manganese-hydrogen battery with potential for grid-scale energy storage[J]. Nature Energy, 2018, 3(5): 428-435.
[4]
方陈, 张宇, 廖望, 等. 区域能源互联网多能协同优化中的储能效益评估[J]. 电力建设, 2021, 42(5):48-56.
FANG Chen, ZHANG Yu, LIAO Wang, et al. Benefit evaluation of energy storage in multi-energy collaborative optimization of regional energy Internet[J]. Electric Power Construction, 2021, 42(5): 48-56.
[5]
李建林, 郭斌琪, 牛萌, 等. 风光储系统储能容量优化配置策略[J]. 电工技术学报, 2018, 33(6): 1189-1196.
LI Jianlin, GUO Binqi, NIU Meng, et al. Optimal configuration strategy of energy storage capacity in wind/PV/storage hybrid system[J]. Transactions of China Electrotechnical Society, 2018, 33(6): 1189-1196.
[6]
李笑竹, 王维庆, 王海云, 等. 基于鲁棒优化的风光储联合发电系统储能配置策略[J]. 太阳能学报, 2020, 41(8): 67-78.
LI Xiaozhu, WANG Weiqing, WANG Haiyun, et al. Energy storage allocation strategy of wind-solar-storage combined system based on robust optimization[J]. Acta Energiae Solaris Sinica, 2020, 41(8): 67-78.
[7]
杨立滨, 曹阳, 魏韡, 等. 计及风电不确定性和弃风率约束的风电场储能容量配置方法[J]. 电力系统自动化, 2020, 44(16): 45-52.
YANG Libin, CAO Yang, WEI Wei, et al. Configuration method of energy storage for wind farms considering wind power uncertainty and wind curtailment constraint[J]. Automation of Electric Power Systems, 2020, 44(16): 45-52.
[8]
任大伟, 金晨, 侯金鸣, 等. 基于时序运行模拟的新能源配置储能替代火电规划模型[J]. 中国电力, 2021, 54(7): 18-26.
REN Dawei, JIN Chen, HOU Jinming, et al. Planning model for renewable energy with energy storage replacing thermal power based on time series operation simulation[J]. Electric Power, 2021, 54(7): 18-26.
[9]
刘永前, 梁超, 阎洁, 等. 风-光电站中储能系统混合最优配置及其经济性研究[J]. 中国电力, 2020, 53(12): 143-150.
LIU Yongqian, LIANG Chao, YAN Jie, et al. Optimal configuration and economic study of hybrid energy storage system in wind and solar power plants[J]. Electric Power, 2020, 53(12): 143-150.
[10]
吴倩, 王洋, 王琳媛, 等. 计及波动平抑与经济性的风光储系统中混合储能容量优化配置[J/OL]. 电测与仪表: 1-10 [2021-07-23]. http://kns.cnki.net/kcms/detail/23.1202.TH.20200601.1243.018.html.
WU Qian, WANG Yang, WANG Linyuan, et al. Optimal capacity allocation of hybrid energy storage system in wind-solar-battery system considering fluctuation smoothing and economy[J/OL]. Electrical Measurement Instrumentation: 1-10 [2021-07-23]. http://kns.cnki.net/kcms/detail/23.1202.TH.20200601.1243.018.html.
[11]
李瑞民, 张新敬, 徐玉杰, 等. 风光互补系统中混合储能容量优化配置研究[J]. 储能科学与技术, 2019, 8(3): 512-522.
LI Ruimin, ZHANG Xinjing, XU Yujie, et al. Research on optimal configuration of hybrid energy storage capacity for wind-solar generation system[J]. Energy Storage Science and Technology, 2019, 8(3): 512-522.
[12]
XU F Q, LIU J C, LIN S S, et al. A multi-objective optimization model of hybrid energy storage system for non-grid-connected wind power: A case study in China[J]. Energy, 2018, 163: 585-603.
[13]
刘颖明, 王瑛玮, 王晓东, 等. 基于蚁狮算法的风电集群储能容量配置优化方法[J]. 太阳能学报, 2021, 42(1): 431-437.
LIU Yingming, WANG Yingwei, WANG Xiaodong, et al. Optimization of storage capacity allocation in wind farm cluster based on ant lion optimization algorithm[J]. Acta Energiae Solaris Sinica, 2021, 42(1): 431-437.
[14]
罗仕华, 胡维昊, 黄琦, 等. 市场机制下光伏/小水电/抽水蓄能电站系统容量优化配置[J]. 电工技术学报, 2020, 35(13): 2792-2804.
LUO Shihua, HU Weihao, HUANG Qi, et al. Optimization of photovoltaic/small hydropower/pumped storage power station system sizing under the market mechanism[J]. Transactions of China Electrotechnical Society, 2020, 35(13): 2792-2804.
[15]
朱俊澎, 袁越, 吴涵. 考虑移动氢储能和高密度可再生能源的主动配电网优化调度[J]. 电力自动化设备, 2020, 40(12): 42-50.
ZHU Junpeng, YUAN Yue, WU Han. Optimal dispatch of active distribution network considering mobile hydrogen energy storage and high-density renewable energy sources[J]. Electric Power Automation Equipment, 2020, 40(12): 42-50.
[16]
李奇, 赵淑丹, 蒲雨辰, 等. 考虑电氢耦合的混合储能微电网容量配置优化[J]. 电工技术学报, 2021, 36(3): 486-495.
LI Qi, ZHAO Shudan, PU Yuchen, et al. Capacity optimization of hybrid energy storage microgrid considering electricity-hydrogen coupling[J]. Transactions of China Electrotechnical Society, 2021, 36(3): 486-495.
[17]
XU C B, KE Y M, LI Y B, et al. Data-driven configuration optimization of an off-grid wind/PV/hydrogen system based on modified NSGA-II and CRITIC-TOPSIS[J]. Energy Conversion and Management, 2020, 215: 112892.
[18]
袁铁江, 张昱, 栗磊, 等. 计及功率密度约束含氢储能的预装式多元储能电站容量优化配置研究[J]. 电工技术学报, 2021, 36(3): 496-506.
YUAN Tiejiang, ZHANG Yu, LI Lei, et al. Capacity optimization configuration of pre-installed multi-energy storage power station considering power density constrained hydrogen storage[J]. Transactions of China Electrotechnical Society, 2021, 36(3): 496-506.
[19]
周长城, 马溪原, 郭晓斌, 等. 基于主从博弈的工业园区综合能源系统互动优化运行方法[J]. 电力系统自动化, 2019, 43(7): 74-80.
ZHOU Changcheng, MA Xiyuan, GUO Xiaobin, et al. Leader-follower game based optimized operation method for interaction of integrated energy system in industrial park[J]. Automation of Electric Power Systems, 2019, 43(7): 74-80.
[20]
DEB K, AGRAWAL S, PRATAP A, et al. A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II[C]// International Conference on Parallel Problem Solving from Nature. Springer, Berlin, Heidelberg, 2000: 849-858.
[21]
DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197.

Funding

National Key R&D Program of China(2021YFE0102400)
China Postdoctoral Science Foundation(2020M680488)
China Postdoctoral Science Foundation(2021M691231)
PDF(4657 KB)

Accesses

Citation

Detail

Sections
Recommended

/