Power-Voltage Mapping Method Based on Comprehensive Probability Model and Deep Learning for Smart Grid

LI Jianyi, LI Peng, XU Xiaochun, SHI Ruyu, ZENG Pingliang, XIA Hui

Electric Power Construction ›› 2022, Vol. 43 ›› Issue (2) : 37-44.

PDF(3639 KB)
PDF(3639 KB)
Electric Power Construction ›› 2022, Vol. 43 ›› Issue (2) : 37-44. DOI: 10.12204/j.issn.1000-7229.2022.02.005
Smart Grid

Power-Voltage Mapping Method Based on Comprehensive Probability Model and Deep Learning for Smart Grid

Author information +
History +

Abstract

With the increase in the penetration rate of new energy based distributed power generation, its characteristics such as strong intermittent and high volatility will have a greater impact on grid voltage fluctuations. How to calculate the steady-state voltage of the power grid with complex distributed power access more quickly is of great significance. In this paper, by sampling a great deal of real output data of photovoltaic and wind power, a comprehensive probability model is improved and generated on the basis of the traditional probability model, and the probability distribution deviation caused by the temporal and spatial characteristics is corrected through the Markov transition probability matrix. Then, taking the actual output data of adjacent photovoltaic and wind power stations in a certain area of southern China as a sample, the steady-state voltage at each node of the distribution network under different scenarios is calculated in the distribution network topology. Finally, the results of the calculation example show that the power grid model generated by the improved method simulation in this paper has high authenticity and applicability, and the calculated voltages have high accuracy rate. Moreover, compared with the traditional power system flow calculation, the calculation time is greatly reduced, so that it has better follow-up in the control effect, and is suitable for the calculation of the steady-state voltage of the complex power system with new energy.

Key words

new energy / comprehensive probability model / Markov chain / Monte Carlo simulation / artificial intelligence

Cite this article

Download Citations
Jianyi LI , Peng LI , Xiaochun XU , et al . Power-Voltage Mapping Method Based on Comprehensive Probability Model and Deep Learning for Smart Grid[J]. Electric Power Construction. 2022, 43(2): 37-44 https://doi.org/10.12204/j.issn.1000-7229.2022.02.005

References

[1]
LI P, GUO T, HAN X Q, et al. The optimal decentralized coordinated control method based on the H∞ performance index for an AC/DC hybrid microgrid[J]. International Journal of Electrical Power & Energy Systems, 2021, 125:106442.
[2]
LI P, GUO T, ZHOU F Q, et al. Nonlinear coordinated control of parallel bidirectional power converters in an AC/DC hybrid microgrid[J]. International Journal of Electrical Power & Energy Systems, 2020, 122:106208.
[3]
HAGHIFAM S, NAJAFI-GHALELOU A, ZARE K, et al. Stochastic bi-level coordination of active distribution network and renewable-based microgrid considering eco-friendly compressed air energy storage system and Intelligent parking lot[J]. Journal of Cleaner Production, 2021, 278:122808.
[4]
LI P, WANG Z X, WANG J H, et al. A multi-time-space scale optimal operation strategy for a distributed integrated energy system[J]. Applied Energy, 2021, 289:116698.
[5]
LI P, WANG Z X, LIU H T, et al. Bi-level optimal configuration strategy of community integrated energy system with coordinated planning and operation[J]. Energy, 2021, 236:121539.
[6]
刘健, 同向前, 潘忠美, 等. 考虑过电压因素时分布式光伏电源的准入容量[J]. 电力系统保护与控制, 2014, 42(6):45-51.
LIU Jian, TONG Xiangqian, PAN Zhongmei, et al. The maximum power of distributed PV generation according to over-voltage in distribution network[J]. Power System Protection and Control, 2014, 42(6):45-51.
[7]
代景龙, 韦化, 鲍海波, 等. 基于无迹变换含分布式电源系统的随机潮流[J]. 电力自动化设备, 2016, 36(3):86-93.
DAI Jinglong, WEI Hua, BAO Haibo, et al. Stochastic power flow calculation based on unscented transform for power system with distributed generations[J]. Electric Power Automation Equipment, 2016, 36(3):86-93.
[8]
王乃进, 韩松, 罗远国. 利用日最小负荷置信区间的光伏发电准入容量确定[J]. 电力系统及其自动化学报, 2020, 32(2):54-60.
WANG Naijin, HAN Song, LUO Yuanguo. Method for determining the permitted capacity of photovoltaic generation using daily minimum load with confidence interval[J]. Proceedings of the CSU-EPSA, 2020, 32(2):54-60.
[9]
郑惠萍, 曾鹏, 刘新元, 等. 基于误差前馈预测的多时空尺度风电集群有功功率分层控制策略[J]. 电力建设, 2020, 41(8):120-128.
ZHENG Huiping, ZENG Peng, LIU Xinyuan, et al. Active power layered control strategy based on error feedforward prediction for multiple temporal and spatial scales wind power cluster[J]. Electric Power Construction, 2020, 41(8):120-128.
[10]
黄伟, 葛良军, 华亮亮, 等. 基于概率潮流的主动配电网日前-实时两级优化调度[J]. 电力系统自动化, 2018, 42(12):51-57,105.
HUANG Wei, GE Liangjun, HUA Liangliang, et al. Day-ahead and real-time optimal scheduling for active distribution network based on probabilistic power flow[J]. Automation of Electric Power Systems, 2018, 42(12):51-57,105.
[11]
汪惟源, 窦飞, 程锦闽, 等. 一种风光联合出力概率模型建模方法[J]. 电力系统保护与控制, 2020, 48(10):22-29.
WANG Weiyuan, DOU Fei, CHENG Jinmin, et al. A modeling method for a wind and photovoltaic joint power probability model[J]. Power System Protection and Control, 2020, 48(10):22-29.
[12]
任洲洋, 颜伟, 项波, 等. 考虑光伏和负荷相关性的概率潮流计算[J]. 电工技术学报, 2015, 30(24):181-187.
REN Zhouyang, YAN Wei, XIANG Bo, et al. Probabilistic power flow analysis incorporating the correlations between PV power outputs and loads[J]. Transactions of China Electrotechnical Society, 2015, 30(24):181-187.
[13]
杨挺, 韩旭涛, 姜含, 等. 电力系统科学计算在云数据中心的优化任务调配算法研究[J]. 电网技术, 2021, 12(27):1-13.
YANG Ting, HAN Xutao, JIANG Han, et al. Research on task scheduling algorithm of power system scientific calculations in data center[J]. Power System Technology, 2021, 12(27):1-13.
[14]
杨虎, 刘琼荪, 钟波. 数理统计[M]. 北京: 高等教育出版社, 2004.
[15]
赵渊, 沈智健, 周念成, 等. 基于序贯仿真和非参数核密度估计的大电网可靠性评估[J]. 电力系统自动化, 2008, 32(6):14-19.
ZHAO Yuan, SHEN Zhijian, ZHOU Niancheng, et al. Reliability assessment of bulk power systems utilizing sequential simulation and nonparametric kernel density estimation[J]. Automation of Electric Power Systems, 2008, 32(6):14-19.
[16]
任海军, 张晓星, 肖波, 等. 基于概念格的神经网络日最大负荷预测输入参数选择[J]. 吉林大学学报(理学版), 2011, 49(1):87-92.
REN Haijun, ZHANG Xiaoxing, XIAO Bo, et al. Input parameters selection in neural network load forecasting mode based on concept lattice[J]. Journal of Jilin University (Science Edition), 2011, 49(1):87-92.
[17]
刘大贵, 王维庆, 张慧娥, 等. 马尔科夫修正的组合模型在新疆风电中长期可用电量预测中的应用[J]. 电网技术, 2020, 44(9):3290-3297.
LIU Dagui, WANG Weiqing, ZHANG Huie, et al. Application of Markov modified combination model mid-long term available quantity of electricity forecasting in Xinjiang wind power[J]. Power System Technology, 2020, 44(9):3290-3297.
[18]
陈蓉珺, 何永秀, 陈奋开, 等. 基于系统动力学和蒙特卡洛模拟的电动汽车日负荷远期预测[J]. 中国电力, 2018, 51(9):126-134.
CHEN Rongjun, HE Yongxiu, CHEN Fenkai, et al. Long-term daily load forecast of electric vehicle based on system dynamics and Monte Carlo simulation[J]. Electric Power, 2018, 51(9):126-134.
[19]
周艳真, 查显煜, 兰健, 等. 基于数据增强和深度残差网络的电力系统暂态稳定预测[J]. 中国电力, 2020, 53(1):22-31.
ZHOU Yanzhen, ZHA Xianyu, LAN Jian, et al. Transient stability prediction of power systems based on deep residual network and data augmentation[J]. Electric Power, 2020, 53(1):22-31.
[20]
郑智聪, 王红, 齐林海. 基于深度学习模型融合的电压暂降源识别方法[J]. 中国电机工程学报, 2019, 39(1):97-104.
ZHENG Zhicong, WANG Hong, QI Linhai. Recognition method of voltage sag sources based on deep learning models’ fusion[J]. Proceedings of the CSEE, 2019, 39(1):97-104.
[21]
余娟, 杨燕, 杨知方, 等. 基于深度学习的概率能量流快速计算方法[J]. 中国电机工程学报, 2019, 39(1):22-30.
YU Juan, YANG Yan, YANG Zhifang, et al. Fast probabilistic energy flow analysis based on deep learning[J]. Proceedings of the CSEE, 2019, 39(1):22-30.
[22]
汤奕, 崔晗, 李峰, 等. 人工智能在电力系统暂态问题中的应用综述[J]. 中国电机工程学报, 2019, 39(1):2-13.
TANG Yi, CUI Han, LI Feng, et al. Review on artificial intelligence in power system transient stability analysis[J]. Proceedings of the CSEE, 2019, 39(1):2-13.
[23]
闫龙川, 白东霞, 刘万涛, 等. 人工智能技术在云计算数据中心能量管理中的应用与展望[J]. 中国电机工程学报, 2019, 39(1):31-42.
YAN Longchuan, BAI Dongxia, LIU Wantao, et al. Application and prospect of artificial intelligence technology in energy management and optimization for cloud computing data center[J]. Proceedings of the CSEE, 2019, 39(1):31-42.

Funding

Science and Technology Project of State Grid Corporation of China(5108-202018028A-0-0-00)

RIGHTS & PERMISSIONS

Copyright reserved © 2022.
PDF(3639 KB)

Accesses

Citation

Detail

Sections
Recommended

/