A Baud Rate Dynamic Adaptive Communication Technology for Flexible DC Transmission Control and Protection System

DONG Chaowu, LI Zhe, PU Ying, ZHONG Qidi, LI Ming, HAO Junfang

Electric Power Construction ›› 2022, Vol. 43 ›› Issue (7) : 57-62.

PDF(4059 KB)
PDF(4059 KB)
Electric Power Construction ›› 2022, Vol. 43 ›› Issue (7) : 57-62. DOI: 10.12204/j.issn.1000-7229.2022.07.006
Smart Grid

A Baud Rate Dynamic Adaptive Communication Technology for Flexible DC Transmission Control and Protection System

Author information +
History +

Abstract

An important link in the flexible DC transmission control and protection system is the communication between the internal control and external equipment, which requires high speed and stability. The localization substitution of the control and protection system puts forward higher requirements for the stability and compatibility of its communication. The measurement required by the inner loop control is collected, processed and transmitted by the merging unit or transformer. Its communication signal has the characteristics of positive and negative Manchester code and various baud rate coding. The conventional decoding algorithm is easy to fail due to poor compatibility. On the basis of the standard of electronic current and voltage transformer, this paper studies and analyzes the encoding and decoding process of its data frame format of the communication protocol, and puts forward and implements the design method for IEC60044-8 communication interface based on positive and negative Manchester code and baud rate dynamic adaptation of domestic FPGA chip. The experimental results show that the scheme has strong real-time performance, high recognition accuracy and strong compatibility, and has a wide range of application value.

Key words

flexible DC transmission / IEC60044-8 / localization / FPGA chip

Cite this article

Download Citations
Chaowu DONG , Zhe LI , Ying PU , et al . A Baud Rate Dynamic Adaptive Communication Technology for Flexible DC Transmission Control and Protection System[J]. Electric Power Construction. 2022, 43(7): 57-62 https://doi.org/10.12204/j.issn.1000-7229.2022.07.006

References

[1]
汤广福, 贺之渊, 庞辉. 柔性直流输电工程技术研究、应用及发展[J]. 电力系统自动化, 2013, 37(15): 3-14.
TANG Guangfu, HE Zhiyuan, PANG Hui. Research, application and development of VSC-HVDC engineering technology[J]. Automation of Electric Power Systems, 2013, 37(15): 3-14.
[2]
申艳红, 庞科伟, 黄浩然. 多端直流输电与直流电网技术[J]. 电子技术与软件工程, 2018(5): 237.
[3]
周杨. 基于模块化多电平换流技术的柔性直流输电系统研究[D]. 杭州: 浙江大学, 2013.
ZHOU Yang. Study of flexible HVDC based on modular multilevel converter[D]. Hangzhou: Zhejiang University, 2013.
[4]
董云龙, 包海龙, 田杰, 等. 柔性直流输电控制及保护系统[J]. 电力系统自动化, 2011, 35(19): 89-92.
DONG Yunlong, BAO Hailong, TIAN Jie, et al. Control and protection system for VSC-HVDC[J]. Automation of Electric Power Systems, 2011, 35(19): 89-92.
[5]
李瑞生, 李燕斌, 周逢权. 智能变电站功能架构及设计原则[J]. 电力系统保护与控制, 2010, 38(21): 24-27.
LI Ruisheng, LI Yanbin, ZHOU Fengquan. The functional frame and design principles of smart substation[J]. Power System Protection and Control, 2010, 38(21): 24-27.
[6]
李兴源, 曾琦, 王渝红, 等. 柔性直流输电系统控制研究综述[J]. 高电压技术, 2016, 42(10): 3025-3037.
LI Xingyuan, ZENG Qi, WANG Yuhong, et al. Control strategies of voltage source converter based direct current transmission system[J]. High Voltage Engineering, 2016, 42(10): 3025-3037.
[7]
胡文旺, 唐志军, 林国栋, 等. 柔性直流控制保护系统方案及其工程应用[J]. 电力系统自动化, 2016, 40(21): 27-33, 46.
HU Wenwang, TANG Zhijun, LIN Guodong, et al. Scheme and engineering application of flexible DC control and protection system[J]. Automation of Electric Power Systems, 2016, 40(21): 27-33, 46.
[8]
刘一民, 王书扬, 李彬, 等. 逆变型新能源场站柔性直流送出系统交流线路差动保护灵敏性优化方案[J]. 电力建设, 2022, 43(1): 63-69.
LIU Yimin, WANG Shuyang, LI Bin, et al. Sensitivity optimization scheme of ac line differential protection in MMC-HVDC system of inverter new energy station[J]. Electric Power Construction, 2022, 43(1): 63-69.
[9]
李响, 王志新, 刘文晋. 海上风电柔性直流输电变流器的研究与开发[J]. 电力自动化设备, 2009, 29(2): 10-14, 20.
LI Xiang, WANG Zhixin, LIU Wenjin. Flexible direct current transmission converter for offshore wind farm[J]. Electric Power Automation Equipment, 2009, 29(2): 10-14, 20.
[10]
孙瑞娟, 梁军, 王克文, 等. 海上风电集电系统研究综述[J]. 电力建设, 2021, 42(6): 105-115.
SUN Ruijuan, LIANG Jun, WANG Kewen, et al. Overview of offshore wind power collection system[J]. Electric Power Construction, 2021, 42(6): 105-115.
[11]
高金宇, 施利春. 国产化芯片选型平台的设计与实现[J]. 机电技术, 2021, 44(4): 24-25, 56.
[12]
朱晶. 全球工业芯片产业现状及对我国工业芯片发展的建议[J]. 中国集成电路, 2021, 30(S1): 15-19, 48.
ZHU Jing. The Current status of the global industrial chip industry and suggestions for the development of China industrial chips[J]. China Integrated Circuit, 2021, 30(S1): 15-19, 48.
[13]
中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 互感器第八部分:电子式电流互感器:GB/T 20840.8-2007 [S].
[14]
黄智宇, 段雄英, 张可畏, 等. 电子式高压互感器数字接口的设计及实现[J]. 电力系统自动化, 2005, 29(11): 87-90.
HUANG Zhiyu, DUAN Xiongying, ZHANG Kewei, et al. Design and realization of digital interface of electronic high voltage instrument transducer[J]. Automation of Electric Power Systems, 2005, 29(11): 87-90.
[15]
付林, 任志平, 刘承杰. 基于FPGA技术的曼彻斯特编码器设计[J]. 现代电子技术, 2007, 30(17): 55-56, 59.
FU Lin, REN Zhiping, LIU Chengjie. Design of Manchester coder based on FPGA[J]. Modern Electronics Technique, 2007, 30(17): 55-56, 59.
[16]
张慧哲, 李伟凯, 郑绳楦. 基于IEC60044-8标准的电子式互感器数字输出接口的研究与设计[J]. 高压电器, 2005, 41(4): 286-288, 291.
ZHANG Huizhe, LI Weikai, ZHENG Shengxuan. Study and design of digital output interface on electronic transformers according to IEC 60044-8[J]. High Voltage Apparatus, 2005, 41(4): 286-288, 291.
[17]
朱雷, 盛春波, 郑绳楦. 基于IEC60044-8标准的电子式电流互感器数字输出编码模块的FPGA实现[J]. 电力自动化设备, 2006, 26(8): 67-70.
ZHU Lei, SHENG Chunbo, ZHENG Shengxuan. FPGA realization of digital output encoding module for electroniccurrent transformers based on IEC 60044-8 standard[J]. Electric Power Automation Equipment, 2006, 26(8): 67-70.
[18]
殷志良, 刘万顺, 杨奇逊, 等. 变电站自动化系统过程层与间隔层串行通信研究[J]. 中国电力, 2004, 37(7): 29-32.
YIN Zhiliang, LIU Wanshun, YANG Qixun, et al. Investigation of serial communication between process level and bay level of substation automation system[J]. Electric Power, 2004, 37(7): 29-32.

Funding

State Grid Corporation of China Research Program(5100-202256001A-1-1-ZN)
PDF(4059 KB)

Accesses

Citation

Detail

Sections
Recommended

/