Analysis of Low Carbon Operating Models in Steel Industrial Community Integrated Energy System Considering Electric Arc Furnace Short Process

ZHAO Haiqi, DONG Shufeng, NAN Bin, ZHANG Xianglong

Electric Power Construction ›› 2023, Vol. 44 ›› Issue (6) : 23-32.

PDF(4614 KB)
PDF(4614 KB)
Electric Power Construction ›› 2023, Vol. 44 ›› Issue (6) : 23-32. DOI: 10.12204/j.issn.1000-7229.2023.06.003
Energy and Power Technology, Economy and Policies Towards Carbon Peaking and Carbon Neutrality·Hosted by Associate Professor ZHAO Junhua, Dr. QIU Jing and Professor WEN Fushuan·

Analysis of Low Carbon Operating Models in Steel Industrial Community Integrated Energy System Considering Electric Arc Furnace Short Process

Author information +
History +

Abstract

The iron and steel industry in China is under pressure to reduce carbon emissions; however, the carbon emissions from the traditional blast furnace long-process metallurgy remain high, and the hydrogen metallurgy technology is still in infancy. Therefore, the development of electric arc furnace short-process steelmaking is the low-carbon development approach in the medium term. First, the energy supply and consumption structure of an integrated energy system of the steel industrial community is constructed, with new energy sources, energy storage equipment, blast furnace gas generation technology, and two metallurgical processes: the blast furnace long-process and electric arc furnace short-process. Then, a model of the equipment and metallurgical processes is presented. Second, an optimal dispatch model that considers carbon emissions and equipment operating costs is developed for the community. Finally, the impact of introducing new energy sources, energy storage equipment, and blast furnace gas generation technology on the proportion of electric arc furnace steel production, as well as the impact of different proportions of electric arc furnace steel on the economics of the community, is investigated in different scenarios. The results show that the introduction of new energy, energy storage equipment, and blast furnace gas power generation technology will increase the proportion of electric arc furnace steel in the community, reduce the community's production and operating costs, and reduce carbon emissions.

Key words

integrated energy system / electric arc furnace short process / blast furnace gas power generation / carbon emissions / iron and steel industry

Cite this article

Download Citations
Haiqi ZHAO , Shufeng DONG , Bin NAN , et al. Analysis of Low Carbon Operating Models in Steel Industrial Community Integrated Energy System Considering Electric Arc Furnace Short Process[J]. Electric Power Construction. 2023, 44(6): 23-32 https://doi.org/10.12204/j.issn.1000-7229.2023.06.003

References

[1]
International Energy Agency. Global energy review: CO2 emissions in 2020[R]. Paris: International Energy Agency, 2021.
[2]
MALLAPATY S. How China could be carbon neutral by mid-century[J]. Nature, 2020, 586(7830): 482-483.
[3]
罗仕华, 胡维昊, 刘雯, 等. 中国2060碳中和能源系统转型路径研究[J/OL]. 中国科学: 技术科学, 2022[2022-08-15]. http://kns.cnki.net/kcms/detail/11.5844.TH.20220714.1552.002.html
LUO Shihua, HU Weihao, LIU Wen, et al. Transition pathway for China to achieve carbon neutrality by 2060[J/OL]. Scientia Sinica(Technologica), 2022[2022-08-15]. http://kns.cnki.net/kcms/detail/11.5844.TH.20220714.1552.002.html
[4]
王利兵, 张赟. 中国能源碳排放因素分解与情景预测[J]. 电力建设, 2021, 42(9): 1-9.
Abstract
我国能源活动碳排放占总碳排放85%以上,研究能源活动碳排放的变化规律对于实现碳达峰碳中和目标具有重要意义。首先,采用对数平均迪氏分解法(logarithmic mean Divisia index,LMDI)对1995—2017年我国能源消费碳排放变化的影响因素进行分解,从经济规模、产业结构、能源强度、能源结构、能源价格、人均可支配收入、人口规模这7个方面,模型给出了相关因素对一、二、三产业和居民部门碳排放变化的贡献。结果表明,对于3个产业部门,经济增长是碳排放增长的首要驱动力,而技术进步带来的能源强度下降、产业结构优化和能源消费结构改善呈现负效应,且产业结构优化和能源结构清洁化的作用越来越显著。对于居民部门,人均可支配收入是居民部门碳排放增长的推动力,而能源价格呈现明显的负效应。其次,设计了3种情景,运用可拓展的随机性的环境影响评估模型(stochastic impacts by regression population,affluence and technology,STIRPAT)对2030年我国能源碳排放进行预测,在以实现碳达峰为目标的低碳情景中,我国能源碳排放有望于2025—2029年实现达峰,峰值水平为101亿~110亿t。最后,为实现碳达峰碳中和目标,建议以构建中国能源互联网为基础平台,实施“清洁替代”和“电能替代”,推进能源转型。
WANG Libing, ZHANG Yun. Factors decomposition and scenario prediction of energy-related CO2 emissions in China[J]. Electric Power Construction, 2021, 42(9): 1-9.

Energy-related carbon emissions account for more than 85% of total carbon emissions in China, and the research on changes of energy-related carbon emissions is of great significance for achieving carbon peak and neutrality goals. Firstly, this paper uses the Logarithmic Mean Divisia Index (LMDI) to decompose the impacting factors of China's energy-related CO2 emissions changes from 1995 to 2017. From the aspects of economic scale, industry structure, energy intensity, energy structure, energy prices, per capita disposable income and population size, the model gives the contribution of related factors to energy-related CO2 changes in primary, secondary, tertiary and residential sectors. The results show that for the three industry sectors, economic growth is the primary drive of CO2 emission growth, while declining energy intensity, improved industrial structure and energy consumption structure show negative effects. For the residential sector, per capita disposable income and population size are the driving forces behind the CO2 emission growth, and energy prices show a significant negative effect. Secondly, in order to predict China's energy-related CO2 in 2030, three scenarios are designed and the Stochastic Impacts by Regression Population, Affluence and Technology (STIRPAT) model is implemented. In the low carbon scenario with the goal of achieving carbon peaks, China's energy-related CO2 emissions are expected to peak around 2025-2029 and the level is about 10.1 billion to 11.0 billion tons. Finally, in order to achieve CO2 emission peak before 2030 and carbon neutrality before 2060, it is recommended to build the China Energy Internet as the basic platform, to implement the clean replacement and electricity replacement, and accelerate the energy transition.

[5]
World Steel Association. Global crude steel output decreases by 0.9% in 2020[EB/OL]. Brussels: World Steel Association, 2021 [2022-8-15]. https://www.worldsteel.org/media-centre/press-releases/2021/Global crude-steel-output-decreases-by-0.9-in-2020.html
[6]
World Steel Association. Steel statistical yearbooks 2000 to 2019[R]. Brussels: World Steel Association, 2011-2022.
[7]
工业和信息化部, 发展改革委, 生态环境部. 关于促进钢铁工业高质量发展的指导意见[EB/OL]. 北京: 工业和信息化部, 发展改革委, 生态环境部, 2022[2022-1-20]. http://www.gov.cn/zhengce/zhengceku/2022-02/08/content_5672513.htm
[8]
姚同路, 吴伟, 杨勇, 等. “双碳” 目标下中国钢铁工业的低碳发展分析[J]. 钢铁研究学报, 2022, 34(6): 505-513.
YAO Tonglu, WU Wei, YANG Yong, et al. Analysis on low-carbon development of China’s steel industry under “dual-carbon” goal[J]. Journal of Iron and Steel Research, 2022, 34(6): 505-513.
[9]
上官方钦, 殷瑞钰, 李煜, 等. 论中国发展全废钢电炉流程的战略意义[J]. 钢铁, 2021, 56(8): 86-92.
SHANGGUAN Fangqin, YIN Ruiyu, LI Yu, et al. Dissussion on strategic significance of developing full scrap EAF process in China[J]. Iron & Steel, 2021, 56(8): 86-92.
[10]
VERCAMMEN S, CHALABYAN A, RAMSBOTTOM O, et al. The growing importance of steep scrap in China[R]. NewYork: McKinsey Company, 2017.
[11]
CHALABYAN A, LI Y, TANG R, et al. How should steelmakers adapt at the dawn of the EAF mini-mill era in China?[R]. New York: McKinsey Company, 2019.
[12]
李鸿熹. 基于出口垄断势力的中国铁矿石贸易分析[D]. 南京: 南京大学, 2021.
LI Hongxi. Analysis of China iron ore trade based on export monopoly power[D]. Nanjing: Nanjing University, 2021.
[13]
WU J, YAG J, MA L, et al. A system analysis of the development strategy of iron ore in China[J]. Resources Policy, 2016, 48: 32-40.
[14]
朱凯, 张艳红. “双碳” 形势下电力行业氢能应用研究[J]. 发电技术, 2022, 43(1): 65-72.
Abstract
氢是可储存、可移动、能控制的二次清洁能源,是理想的电力能源载体。把氢作为能源进行开发利用,是应对全球气候变化、保障国家能源安全、实现全社会低碳转型的重要手段。作为重要的温室气体排放行业,电力行业尤其是发电行业,应尽快发展包括氢能在内的新型能源应用,实现行业的能源零碳转型。为此,根据“双碳”目标要求,分析了我国电力行业氢能应用现状,提出了当前氢能应用存在的主要问题。借鉴国际主要氢能国家电力应用发展经验,结合“再电气化”要求,从法规制定、政策支持、金融创新以及电力行业场景应用等角度为氢能电力应用提出发展建议,即“十四五”期间电力企业应做好氢能发展技术储备,抓住行业发展机会,积极推动电力系统能源转型升级。
ZHU Kai, ZHANG Yanhong. Research on application of hydrogen in power industry under “double carbon” circumstance[J]. Power Generation Technology, 2022, 43(1): 65-72.

Hydrogen is a secondary clean energy which can be stored, moved and controlled. It is an ideal power energy carrier. The development and utilization of hydrogen as an energy source is an important means to tackle the climate change, ensure the national energy security and realize low-carbon transformation of the whole society. As an important greenhouse gas emission industry, the power industry, especially the power generation industry, should develop new energy applications including hydrogen as soon as possible to achieve zero-carbon energy transformation in the industry. According to the requirements of the “double carbon” goal, this paper analyzed the current situation of hydrogen application in China’s power industry, and put forward the main problems existing in the current hydrogen application. Based on the experience of power application development in major international hydrogen countries, combined the requirements of “re-electrification”, this paper put forward suggestions for the development of hydrogen power application from the perspectives of regulation formulation, policy support, financial innovation, and power industry scenario application. That is, during the “14th Five-Year Plan” period, it is necessary to make good technical reserves for hydrogen development, seize the opportunities for industrial development, and actively promote the transformation and upgrading of power system energy.

[15]
危中良, 戴金华. 氢能在钢铁企业应用方向的探讨[J]. 冶金动力, 2022, 41(3): 67-70, 86.
WEI Zhongliang, DAI Jinhua. Discussion on the application direction of hydrogen energy in iron and steel enterprises[J]. Metallurgical Power, 2022, 41(3): 67-70, 86.
[16]
张焱, 郝振波, 朱振涛, 等. 海上风能岸上制氢的经济可行性分析[J]. 电力建设, 2023, 44(3): 148-154.
Abstract
我国沿海地区经济发达,能源需求量大,探索海上风电制氢为其他行业供能具有现实意义。比较了海上风电输电上岸后的两种利用模式:1)风电售电模式;2)风电制氢模式。首先通过比较碱性(alkaline,ALK)电解槽和质子交换膜(proton exchange membrane,PEM)电解槽的工作特性,建立了制氢系统产氢量模型。其次,建立两种模式的经济分析模型;最后,结合净现值和平准化制氢成本比较了不同风能利用模式的经济性。结果表明在当前技术情景下,氢价取46.93元/kg、风电上网电价取0.531 8元/(kW·h)时,风电制氢模式比风电售电模式更具有经济性,氢价是影响制氢模式经济性的最大因素,而氢价取决于未来氢市场的供需关系,不确定性较大。
ZHANG Yan, HAO Zhenbo, ZHU Zhentao, et al. Economic feasibility analysis of onshore hydrogen production using offshore wind power[J]. Electric Power Construction, 2023, 44(3): 148-154.

The coastal areas of China are economically developed and have a large energy demand. It is of practical significance to explore the production of hydrogen using offshore wind power to supply energy to other industries. This paper compares two utilization modes of offshore wind power after transmission on shore, i.e., direct sales and use for hydrogen production. Firstly, by comparing the power characteristics of alkaline (ALK) and proton exchange membrane (PEM) electrolyzers, the hydrogen production model is established. Secondly, the economic models of the two modes are established. Finally, the economy of different wind energy utilization modes are compared using net present value (NPV) and levelized cost of hydrogen production (LCOH). The results show that, under the current technical scenario, when the hydrogen price is 46.93 yuan/kg and the feed-in electricity price of wind power is 0.5318 yuan/(kW·h), the wind power used for hydrogen production is more economical than the wind power sales mode. The hydrogen price is the biggest factor affecting the economics of the hydrogen production model, where the hydrogen price depends on the supply and demand relationship in the future hydrogen market, and there is great uncertainty.

[17]
李峰, 储满生, 唐珏, 等. 基于LCA的煤制气-气基竖炉-电炉短流程和高炉-转炉流程环境影响分析[J]. 钢铁研究学报, 2020, 32(7): 577-583.
LI Feng, CHU Mansheng, TANG Jue, et al. Environmental performance analysis of coal gasification-shaft furnace-electric furnace process and BF-BOF process based on life cycle assessment[J]. Journal of Iron and Steel Research, 2020, 32(7): 577-583.
[18]
李少飞, 顾华志, 黄奥. 钢铁行业氢冶金技术的发展初探[J]. 耐火材料, 2021, 55(4):360-363.
LI Shaofei, GU Huazhi, HUANG Ao. Development of hydrogen metallurgy technology in iron and steel industry[J]. Refractories, 2021, 55(4):360-363.
[19]
柴锡翠, 岳强, 张钰洁, 等. 氢冶金的研究现状及其能耗状况分析[C]// 第十一届全国能源与热工学术年会论文集. 安徽: 中国金属学会能源与热工分会, 2021: 117-125.
CHAI Xicui, YUE Qiang, ZHANG Yujie, et al. Research status and energy consumption analysis of hydrogen metallurgy[C]// Proceedings of the 11th Conference on Energy and Thermal Engineering. Anhui: Energy and Thermal Engineering Branch of the Chinese Society for Metals, 2021: 117-125.
[20]
张鹏成, 徐箭, 孙元章, 等. 氢能驱动下钢铁园区能源系统低碳发展模式[J]. 电力系统自动化, 2022, 46(13):10-20.
ZHANG Pengcheng, XU Jian, SUN Yuanzhang, et al. Low-carbon development mode for energy system of iron and steel park driven by hydrogen energy[J]. Automation of Electric Power Systems, 2022, 46(13):10-20.
[21]
侯明山, 范新有, 刘超, 等. 非碳冶金高温熔炼的研究[J]. 特殊钢, 2011, 32(5): 14-17.
HOU Mingshan, FAN Xinyou, LIU Chao, et al. A study on non-carbon steelmaking at high temperature[J]. Special Steel, 2011, 32(5):14-17.
As compared with carbon metallurgy, a concept of non-carbon metallurgy to combine solar energy, wind power and metallurgy technology is advanced to expound the idea of non-carbon metallurgy with photo-wind complement each other. Non-carbon metallurgy technology includes 4 unit technologies- photo-electricity transformation, storage cell, electric power distribution and control unit and metallurgical reactor. Test of non-carbon metallurgy is carried out by a 1 kg non-carbon metallurgy test furnace system designed with technology integration and bring forth original ideas, and system parameters are verified by preliminary energy analysis on the system. Test results show that melting temperature more than 1 600 °C is gotten by directly using the technology of photo-wind complement each other to melt various metals.
[22]
孙彦广, 梁青艳, 李文兵, 等. 基于能量流网络仿真的钢铁工业多能源介质优化调配[J]. 自动化学报, 2017, 43(6):1065-1079.
SUN Yanguang, LIANG Qingyan, LI Wenbing, et al. Steel industry multi-type energy optimized scheduling with energy flow network simulation[J]. Acta Automatica Sinica, 2017, 43(6):1065-1079.
[23]
梁青艳. 基于流程网络仿真的钢铁企业炼钢调度和能源优化[D]. 北京: 钢铁研究总院, 2021.
LIANG Qingyan. Steelmaking scheduling and energy optimization of iron and steel enterprises based on process network simulation[D]. Beijing: Central Iron and Steel Research Institute, 2021.
[24]
张琦, 提威, 杜涛, 等. 钢铁企业富余煤气-蒸汽-电力耦合模型及其应用[J]. 化工学报, 2011, 62(3):753-758.
ZHANG Qi, TI Wei, DU Tao, et al. Coupling model of gas-steam-electricity and its application in steel works[J]. CIESC Journal, 2011, 62(3):753-758.
[25]
马腾飞, 吴俊勇, 郝亮亮, 等. 基于能源集线器的微能源网能量流建模及优化运行分析[J]. 电网技术, 2018, 42(1): 179-186.
MA Tengfei, WU Junyong, HAO Liangliang, et al. Energy flow modeling and optimal operation analysis of micro energy grid based on energy hub[J]. Power System Technology, 2018, 42(1): 179-186.
[26]
邱纯, 应展烽, 冯奕, 等. 计及碳配额的混合储能综合微能源网优化运行研究[J]. 电力工程技术, 2022, 41(2): 119-127.
QIU Chun, YING Zhanfeng, FENG Yi, et al. Optimal operation of hybrid energy storage integrated micro-energy network considering carbon quote[J]. Electrical Power Engineering Technology, 2022, 41(2): 119-127.
[27]
李晶, 王新江, 潘宏涛. 钢铁工业长流程和短流程的比较分析[N]. 世界金属导报, 2018-12-28(B02).
LI Jing, WANG Xinjiang, PAN Hongtao. Comparative analysis of long and short processes in the steel industry[N]. World Metal Herald, 2018-12-28(B02).
[28]
苏泽立. 高炉煤气回收发电项目碳减排问题探究[D]. 邯郸: 河北工程大学, 2018.
SU Zeli. Discussion on carbon emission reduction of blast furnace gas recovery power generation project[D]. Handan: Hebei University of Engineering, 2018.
[29]
李海东. 全烧富余高炉煤气汽轮发电系统的设计及应用[D]. 重庆: 重庆大学, 2008.
LI Haidong. Design and application of steam turbine power generation system burning all surplus blast furnace gas[D]. Chongqing: Chongqing University, 2008.
[30]
冯伟忠, 李励. “双碳” 目标下煤电机组低碳、零碳和负碳化转型发展路径研究与实践[J]. 发电技术, 2022, 43(3):452-461.
Abstract
煤电机组基于现有相关技术体系,可以通过“三步走”减碳战略,即通过技术减碳(节能降耗和深度调峰)实现低碳化,通过燃料脱碳实现零碳化,通过烟气脱碳实现负碳化,逐步实现转型,成为具备煤电机组可靠、可调和稳定等所有优点,同时又解决其高碳排放这一痛点的优质新能源火电。生物质火电作为一种零碳新能源,可以同时破解“风光新能源加电储能无法真正保障电网安全”和“传统煤电稳定可调但碳排放强度过高”这2个困局,成为我国未来低碳电力供应的中坚力量,为尽早实现以新能源为主体的新型电力系统作出其历史性贡献。
FENG Weizhong, LI Li. Research and practice on development path of low-carbon, zero-carbon and negative carbon transformation of coal-fired power units under “double carbon” targets[J]. Power Generation Technology, 2022, 43(3):452-461.

Based on the existing relevant technical system, coal-fired power units can be gradually transformed through the “three-step” carbon reduction strategy, that is, through technical carbon reduction (coal consumption reduction and deep peak shaving) to achieve low carbonization, through fuel decarburization to achieve zero carbonization, through flue gas decarburization to achieve negative carbonization. The strategy makes coal-fired power units have advantages of reliable, harmonic and stable, and solves the high carbon emissions of the units. As a kind of zero-carbon new energy, biomass thermal power can simultaneously solve the following two dilemmas: the wind and solar new energy power plus energy storage can’t really ensure the safety of power grid; the traditional coal power is stable and adjustable, but the carbon emission intensity is too high. Biomass thermal power has become the backbone of China’s future low-carbon power supply, and will make historical contributions to the early realization of a new power system with new energy as the main body.

[31]
吴丹, 赵双鹏, 黄金船, 等. 浅谈高炉煤气在鞍钢的发电利用[J]. 冶金与材料, 2020, 40(1):157-158.
WU Dan, ZHAO Shuangpeng, HUANG Jinchuan, et al. Discussion on power generation utilization of blast furnace gas in angang[J]. Metallurgy and materials, 2020, 40(1):157-158.
[32]
张长云, 黄景光, 李振兴, 等. 极地环境含风氢储混合微电网容量优化配置[J]. 电力工程技术, 2022, 41(1): 108-116.
ZHANG Changyun, HUANG Jingguang, LI Zhenxing, et al. Optimal configuration of wind-hydrogen-storage hybrid microgrid capacity in polar environment[J]. Electrical Power Engineering Technology, 2022, 41(1): 108-116.
[33]
汪锋, 豆南南, 喻冬梅. 基于电力系统碳排放流的分省化石能源消费 CO2排放量测算[J]. 电力系统自动化, 2014, 38(17): 105-112.
WANG Feng, DOU Nannan, YU Dongmei. Measurement of provincial CO2 emission from fossil energy consumption based on carbon emission flow in power systems[J]. Automation of Electric Power Systems, 2014, 38(17): 105-112.
[34]
郑忠, 龙建宇, 高小强, 等. 钢铁企业以计划调度为核心的生产运行控制技术现状与展望[J]. 计算机集成制造系统, 2014, 20(11):2660-2674.
Abstract
对钢铁企业实施有效的生产运行控制是企业在保证产品质量和按订单生产的前提下实现降本增效的重要途径,从钢铁流程式生产的单元制造设备与流程协调优化两个层面来阐述钢铁企业的生产运行控制技术。基于钢铁企业的生产管控信息系统现状,重点分析了钢铁企业从生产订单、生产批量计划、生产调度到生产执行不同层次的计划调度技术特点,归纳了存在的主要问题|指出为实现钢铁制造流程的协调、有序和高效,应提升钢铁企业信息系统的计划调度功能,以强化对生产运行过程的调控和优化。据此对该领域未来的工作重点和发展方向进行了展望。
ZHENG Zhong, LONG Jianyu, GAO Xiaoqiang, et al. Present situation and prospect of production control technology focusing on planning and scheduling in iron and steel enterprise[J]. Computer Integrated Manufacturing Systems, 2014, 20(11):2660-2674.
[35]
发展改革委, 国家能源局. 关于改善电力运行调节促进清洁能源多发满发的指导意见[EB/OL]. 北京: 发展改革委, 国家能源局, 2015[2022-03-20]. http://www.gov.cn/gongbao/content/2015/content_2878235.htm

Funding

State Grid Corporation of China Research Program(5100-202256008A-1-1-ZN)
PDF(4614 KB)

Accesses

Citation

Detail

Sections
Recommended

/