The Optimal Operation Strategy of Distribution Network Considering Carbon Trading and Green Certificate Trading Mechanisms

DENG Shubin, LI Rong, LIANG Zhifei, FAN Pengfei, JIA Xudong, LI Ziqian

Electric Power Construction ›› 2023, Vol. 44 ›› Issue (10) : 149-156.

PDF(3909 KB)
PDF(3909 KB)
Electric Power Construction ›› 2023, Vol. 44 ›› Issue (10) : 149-156. DOI: 10.12204/j.issn.1000-7229.2023.10.015
New Energy Power Generation

The Optimal Operation Strategy of Distribution Network Considering Carbon Trading and Green Certificate Trading Mechanisms

Author information +
History +

Abstract

To realize the low-carbon economic operation of distribution networks with a high penetration of new energy, this study proposes an optimal operation strategy for distribution networks considering carbon trading and green certificate trading. First, distribution network carbon trading and green certificate trading models are analyzed and established. Then, using the comprehensive operation cost of a distribution network as the objective function and considering power flow constraints, the operation constraints of new and distributed energy units, a low-carbon and economic optimal operation model of the distribution network is proposed. Finally, based on the improved IEEE15 node distribution network model, the proposed optimization operation model is verified. This can realize the low-carbon economic operation of the distribution network and significantly reduce carbon emissions, as well as promote the consumption of new energy, providing a technical reference for the low-carbon economic operation of the distribution network with new energy as the main body.

Key words

carbon trading / green certificate trading / distribution network / optimal operation / consumption of new energy

Cite this article

Download Citations
Shubin DENG , Rong LI , Zhifei LIANG , et al . The Optimal Operation Strategy of Distribution Network Considering Carbon Trading and Green Certificate Trading Mechanisms[J]. Electric Power Construction. 2023, 44(10): 149-156 https://doi.org/10.12204/j.issn.1000-7229.2023.10.015

References

[1]
松楠. 实现“双碳”目标亟需完善绿证交易机制[J]. 中国电力企业管理, 2022(19): 60-62.
SONG Nan. To achieve the goal of “double carbon”, it is urgent to improve the green certificate trading mechanism[J]. China Power Enterprise Management, 2022(19): 60-62.
[2]
李鹏, 王瑞, 冀浩然, 等. 低碳化智能配电网规划研究与展望[J]. 电力系统自动化, 2021, 45(24): 10-21.
LI Peng, WANG Rui, JI Haoran, et al. Research and prospect of planning for low-carbon smart distribution network[J]. Automation of Electric Power Systems, 2021, 45(24): 10-21.
[3]
赵冬梅, 徐辰宇, 陶然, 等. 多元分布式储能在新型电力系统配电侧的灵活调控研究综述[J]. 中国电机工程学报, 2023, 43(5): 1776-1798.
ZHAO Dongmei, XU Chenyu, TAO Ran, et al. Review on flexible regulation of multiple distributed energy storage in distribution side of new power system[J]. Proceedings of the CSEE, 2023, 43(5): 1776-1798
[4]
魏震波, 马新如, 郭毅, 等. 碳交易机制下考虑需求响应的综合能源系统优化运行[J]. 电力建设, 2022, 43(1): 1-9.
Abstract
综合能源系统是实现“双碳”目标的有效途径,为进一步挖掘其需求侧可调节潜力对碳减排的作用,提出了一种碳交易机制下考虑需求响应的综合能源系统优化运行模型。首先,根据负荷响应特性将需求响应分为价格型和替代型2类,分别建立了基于价格弹性矩阵的价格型需求响应模型,及考虑用能侧电能和热能相互转换的替代型需求响应模型;其次,采用基准线法为系统无偿分配碳排放配额,并考虑燃气轮机和燃气锅炉的实际碳排放量,构建一种面向综合能源系统的碳交易机制;最后,以购能成本、碳交易成本及运维成本之和最小为目标函数,建立综合能源系统低碳优化运行模型,并通过4类典型场景对所提模型的有效性进行了验证。通过对需求响应灵敏度、燃气轮机热分配比例和不同碳交易价格下系统的运行状态分析发现,合理分配价格型和替代型需求响应及燃气轮机产热比例有利于提高系统运行经济性,制定合理的碳交易价格可以实现系统经济性和低碳性协同。
WEI Zhenbo, MA Xinru, GUO Yi, et al. Optimized operation of integrated energy system considering demand response under carbon trading mechanism[J]. Electric Power Construction, 2022, 43(1): 1-9.

The integrated energy system (IES) is an effective way to achieve the“carbon neutrality and emission peak”goal. In order to further explore the role of the adjustable potential of demand side on carbon emission reduction, an optimized operation model of IES considering the demand response under the carbon trading mechanism is proposed. Firstly, according to the characteristics of load response, the demand response is divided into two types: price-type and substitution-type. The price-type demand response model is established on the basis of price elasticity matrix, and the substitution-type demand response model is constructed by considering the conversion of electricity and heat. Secondly, base-line method is used to allocate free carbon emission quota for the system, and considering the actual carbon emissions of gas turbine and gas boiler, a carbon trading mechanism for the IES is constructed. Finally, a low-carbon optimal operation model of IES is established, whose objective is to minimize the sum cost of energy purchase, cost of carbon transaction and cost of IES operation and maintenance. The effectiveness of the proposed model is verified through four typical scenarios. By analyzing the sensitivity of demand response, heat distribution ratio of gas turbine and the operating state of the system under different carbon trading prices, it is found that reasonable allocation of price-type and substitution-type demand response and heat production ratio of gas turbine is beneficial to improve the operating economy of the system. Making reasonable carbon trading price can realize the coordination of system economy and low carbon.

[5]
陈锦鹏, 胡志坚, 陈颖光, 等. 考虑阶梯式碳交易机制与电制氢的综合能源系统热电优化[J]. 电力自动化设备, 2021, 41(9): 48-55.
CHEN Jinpeng, HU Zhijian, CHEN Yingguang, et al. Thermoelectric optimization of integrated energy system considering ladder-type carbon trading mechanism and electric hydrogen production[J]. Electric Power Automation Equipment, 2021, 41(9): 48-55.
[6]
瞿凯平, 黄琳妮, 余涛, 等. 碳交易机制下多区域综合能源系统的分散调度[J]. 中国电机工程学报, 2018, 38(3): 697-707.
QU Kaiping, HUANG Linni, YU Tao, et al. Decentralized dispatch of multi-area integrated energy systems with carbon trading[J]. Proceedings of the CSEE, 2018, 38(3): 697-707.
[7]
WANG Y Q, QIU J, TAO Y C, et al. Carbon-oriented operational planning in coupled electricity and emission trading markets[J]. IEEE Transactions on Power Systems, 2020, 35(4): 3145-3157.
[8]
刘祚宇, 齐峰, 文福拴, 等. 含电动汽车虚拟电厂参与碳交易时的经济与环境调度[J]. 电力建设, 2017, 38(9): 45-52.
Abstract
 摘 要: 适当设计的碳交易机制是实现碳减排目标的有效途径,而电动汽车(electric vehicle,EV)的大量应用可望产生明显的环境效益。在此背景下,针对包括EV、燃气轮机、风电、光伏发电的虚拟电厂(virtual power plant,VPP)参与碳交易时的情形,建立了经济与环境调度优化模型。首先,简要介绍了碳交易机制,并阐述了VPP参与碳交易时的优化调度问题及其与电力系统的交互方式。之后,建立了VPP经济与环境调度的混合整数二次规划(mixed integer quadratic programming, MIQP)模型,以VPP总体收益最大为优化目标,计及了燃气轮机运行成本、碳排放成本、EV充放电成本等。最后,采用商业求解器YALMIP/CPLEX对所建立的优化模型进行求解,并用算例说明了可行性与有效性。 
LIU Zuoyu, QI Feng, WEN Fushuan, et al. Economic and environmental dispatching in electric vehicles embedded virtual power plants with participation in carbon trading[J]. Electric Power Construction, 2017, 38(9): 45-52.
&nbsp;ABSTRACT: A well-designed carbon trading mechanism represents an efficient way to achieve the pre-defined carbon reduction target, while the wide applications of electric vehicles (EVs) could contribute to significant environment benefits. Given this background, a virtual power plant (VPP) including EVs, gas turbines, wind power units, photovoltaic units with participation in carbon trading is examined, and an economic and environmental optimal dispatching model is presented. First, the carbon trading mechanism is briefly described, and the optimal dispatching problem for a VPP participating in carbon trading as well as the interaction mode between the VPP and the power system concerned are discussed. A mixed integer quadratic programming (MIQP) model for the economic and environmental dispatching problem of the VPP is next established, with an objective of maximizing the total profit and considering the generation costs of gas turbines, carbon emission costs as well as charging/discharging costs of EVs. Finally, the well-developed commercial solver YALMIP/CPLEX is employed to solve the established optimization model, and numerical examples are served for demonstrating the feasibility and effectiveness of the proposed method.<div>&nbsp;</div>
[9]
YANG D C, HE S W, CHEN Q Y, et al. Bidding strategy of a virtual power plant considering carbon-electricity trading[J]. CSEE Journal of Power and Energy Systems, 2019, 5(3): 306-314.
[10]
吴含欣, 董树锋, 张祥龙, 等. 考虑碳交易机制的含风电电力系统日前优化调度[J/OL]. 电网技术:1-10.[2023-08-23].DOI:10.13335/j.1000-3673.pst.2023.0489.
WU Hanxin, DONG Shufeng, ZHANG Xianglong, et al. Optimal dispatching of power system with wind power considering carbon trading mechanism[J/OL]. Power System Technology, :1-10.[2023-08-23].DOI:10.13335/j.1000-3673.pst.2023.0489.
[11]
王继东, 边翊楠, 许秋铭, 等. 考虑风险和碳交易机制的微电网分布鲁棒优化调度[J/OL]. 高电压技术:1-12.[2023-08-23]. https://doi.org/10.13336/j.1003-6520.hve.20230501.
WANG Jidong, BIAN Yinan, XU Qiuming, et al. Distributionally robust optimal dispatching of microgrid considering risk and carbon trading mechanism[J/OL]. High Voltage Engineering:1-12.[2023-08-23]. https://doi.org/10.13336/j.1003-6520.hve.20230501.
[12]
甘磊, 杨天禹, 陈星莺, 等. 基于低碳工艺与流程控制的钢铁工业园区综合能源系统低碳调度方法[J]. 电网技术, 2023, 47(8): 3099-3113.
GAN Lei, YANG Tianyu, CHEN Xingying, et al. Low-carbon scheduling of integrated energy system in iron & steel industrial park considering low-carbon techniques and process control[J]. Power System Technology, 2023, 47(8): 3099-3113.
[13]
杨昆达, 沈晓东. 基于碳交易机制和需求响应的配电网重构研究[J]. 电网与清洁能源, 2023, 39(4): 47-53.
YANG Kunda, SHEN Xiaodong. Research on distribution network reconfiguration based on carbon trading mechanism and demand response[J]. Power System and Clean Energy, 2023, 39(4): 47-53.
[14]
李秋航, 李华强, 何永祥, 等. 计及碳排放成本的输电网与风电分布鲁棒协同扩展规划[J]. 电力信息与通信技术, 2023, 21(1): 62-70.
LI Qiuhang, LI Huaqiang, HE Yongxiang, et al. A distributionally robust joint expansion planning for transmission network and wind power considering carbon emissions cost[J]. Electric Power Information and Communication Technology, 2023, 21(1): 62-70.
[15]
梁作宾, 高山, 王庆, 等. 低碳背景下基于自适应鲁棒优化的含源配电系统规划方法[J]. 电网与清洁能源, 2021, 37(12): 70-80.
LIANG Zuobin, GAO Shan, WANG Qing, et al. A planning method for the source-containing distribution system based on adaptive robust optimization under low-carbon background[J]. Power System and Clean Energy, 2021, 37(12): 70-80.
[16]
ZHANG L, LIU D Y, CAI G W, et al. An optimal dispatch model for virtual power plant that incorporates carbon trading and green certificate trading[J]. International Journal of Electrical Power & Energy Systems, 2023, 144: 108558.
[17]
苏宜强, 刘盛松. 计及碳交易-绿证的“源-荷”互动优化调度策略[J]. 电力需求侧管理, 2021, 23(5): 35-39, 45.
SU Yiqiang, LIU Shengsong. Optimal scheduling strategy of “source-load” interaction considering carbon trading-green card[J]. Power Demand Side Management, 2021, 23(5): 35-39, 45.
[18]
崔杨, 沈卓, 王铮, 等. 考虑绿证-碳排等价交互机制的区域综合能源系统绿色调度[J]. 中国电机工程学报, 2023, 43(12): 4508-4516
CUI Yang, SHEN Zhuo, WANG Zheng, et al. Green dispatch of regional integrated energy system considering green certificate-carbon emission equivalent interaction mechanism[J]. Proceedings of the CSEE, 2023, 43(12): 4508-4516.
[19]
袁桂丽, 刘培德, 唐福斌, 等. 计及绿色电力证书与碳交易制度的“源-荷”协调优化调度[J]. 太阳能学报, 2022, 43(6): 190-195.
Abstract
基于低碳电力和智能电网的背景,考虑现有的风电消纳困境,该文以绿色电力证书为基础,结合碳排放权的交易制度,同时引入需求侧高载能企业负荷的响应模型,并将虚拟电厂经济效益作为优化目标函数,建立以绿证交易为基础,结合碳交易制度和高载能需求侧响应的&#x0201c;源-荷&#x0201d;双侧互补协调优化调度模型。最后将某省份区域电网代入到该文所构建模型之中进行仿真,并采用自适应免疫疫苗算法对模型进行求解,结果表明所建立的计及绿证交易与碳交易的模型有利于促进风电消耗,降低单位发电量的碳排放。
YUAN Guili, LIU Peide, TANG Fubin, et al. Source-load coordination optimal scheduling considering green power certificate and carbon trading mechanisms[J]. Acta Energiae Solaris Sinica, 2022, 43(6): 190-195.
Under the background of low-carbon power and smart grid,considering the existing dilemma of wind power consumption,based on the Green Power Certificate and carbon emission trading system, at the same time introducing the response model of the demand side high capacity energy enterprise load,and taking the economic benefit of the virtual power plant as the optimization objective function, a &#x0201c;source-load&#x0201d; dual-side complementary coordinated optimal dispatch model is established. And then,the regional power grid of a province is substituted into the model constructed in this paper for simulation. Finally, the model is solved using advanced adaptive immune vaccine algorithm. The results show that the established model taking into account green certificate trading and carbon trading is beneficial to improve wind power utilization and reduce carbon emission per unit of electricity generation.
[20]
于雄飞, 郭雁珩. 绿色电力证书定价动态模型及交易策略研究[J]. 水力发电, 2018, 44(6): 94-97.
YU Xiongfei, GUO Yanheng. Research on dynamic pricing model and trading strategies of renewable energy certificate[J]. Water Power, 2018, 44(6): 94-97.
[21]
姚军, 何姣, 吴永飞, 等. 考虑碳交易和绿证交易制度的电力批发市场能源优化[J]. 中国电力, 2022, 55(8): 190-195.
YAO Jun, HE Jiao, WU Yongfei, et al. Energy optimization of electricity wholesale market considering carbon emissions trading and green power certificate trading mechanism[J]. Electric Power, 2022, 55(8): 190-195.
[22]
冯昌森, 谢方锐, 文福拴, 等. 基于智能合约的绿证和碳联合交易市场的设计与实现[J]. 电力系统自动化, 2021, 45(23): 1-11.
FENG Changsen, XIE Fangrui, WEN Fushuan, et al. Design and implementation of joint trading market for green power certificate and carbon based on smart contract[J]. Automation of Electric Power Systems, 2021, 45(23): 1-11.
[23]
李幸芝, 韩蓓, 李国杰, 等. 分布式绿色能源碳交易机制及碳数据管理的挑战[J]. 上海交通大学学报, 2022, 56(8): 977-993.
LI Xingzhi, HAN Bei, LI Guojie, et al. Challenges of distributed green energy carbon trading mechanism and carbon data management[J]. Journal of Shanghai Jiao Tong University, 2022, 56(8): 977-993.
[24]
秦博宇, 周星月, 丁涛, 等. 全球碳市场发展现状综述及中国碳市场建设展望[J]. 电力系统自动化, 2022, 46(21):186-199.
QIN Boyu, ZHOU Xingyue, DING Tao, et al. Review on development of global carbon market and prospect of china’s carbon market construction[J]. Automation of Electric Power Systems, 2022, 46(21):186-199..
[25]
李达, 王栋, 秦日臻, 等. 基于区块链的绿证交易撮合及流通模型研究[J]. 电力信息与通信技术, 2021, 19(8): 76-82.
LI Da, WANG Dong, QIN Rizhen, et al. Research on green securities transaction matching and circulation model based on blockchain[J]. Electric Power Information and Communication Technology, 2021, 19(8): 76-82.
[26]
朱玥荣, 张楠, 肖云鹏, 等. 基于卖方灵活合同的绿电与绿证中长期联合交易机制及其均衡分析[J]. 全球能源互联网, 2023, 6(4): 398-405.
ZHU Yuerong, ZHANG Nan, XIAO Yunpeng, et al. Medium-and long-term joint transaction mechanism of green electricity and green certificates based on sell-side flexible contracts and the equilibrium analysis[J]. Journal of Global Energy Interconnection, 2023, 6(4): 398-405.
[27]
詹博淳, 冯昌森, 尚楠, 等. 发电联盟参与电-碳-绿证市场的协同优化策略[J/OL]. 电力系统及其自动化学报. [2023-08-23]. https://doi.org/10.19635/j.cnki.csu-epsa.001276.
ZHAN Bochun, FENG Changsen, SHANG Nan, et al. Collaborative optimization strategy for an alliance of generation companies to participate in electricity-carbon-green certificate markets[J/OL]. Proceedings of the CSU-EPSA.[2023-08-23]. https://doi.org/10.19635/j.cnki.csu-epsa.001276.
[28]
张洪涛, 周意入, 凃玲英, 等. 计及绿证-碳交易与氢能的综合能源系统多时间尺度优化调度[J/OL]. 电力系统及其自动化学报.[2023-08-23]. https://doi.org/10.19635/j.cnki.csu-epsa.001258.
ZHANG Hongtao, ZHOU Yiru, TU Lingying, et al. Multi-timescale optimization of an integrated energy system for hydrogen energy use with green certificates and carbon trading mechanism[J/OL]. Proceedings of the CSU-EPSA. [2023-08-23]. https://doi.org/10.19635/j.cnki.csu-epsa.001258.
[29]
中华人民共和国生态环境部. 2019—2020 年全国碳排放权交易配额总量设定与分配实施方案(发电行业)[EB/OL]. [2020-12-30]. https://www.mee.gov.cn/xxgk2018/xxgk/xxgk03/202012/t20201230_815546.html.
[30]
林凯骏, 吴俊勇, 刘迪, 等. 基于双层Stackelberg博弈的微能源网能量管理优化[J]. 电网技术, 2019, 43(3): 973-983.
LIN Kaijun, WU Junyong, LIU Di, et al. Energy management optimization of micro energy grid based on hierarchical stackelberg game theory[J]. Power System Technology, 2019, 43(3): 973-983.
[31]
FARIVAR M, LOW S H. Branch flow model: relaxations and convexification: part I[J]. IEEE Transactions on Power Systems, 2013, 28(3): 2554-2564.

Funding

China Southern Power Grid Company Science & Technology Project(GPEC(2021)007007)
PDF(3909 KB)

Accesses

Citation

Detail

Sections
Recommended

/