Simulation Analysis of Fault Cascading Propagation in Power-Gas Coupling System During Extreme Events

DU Yang, LIU Jiayu, GUO Lingyu, ZHANG Chengeng, XU Yin, WANG Ying

Electric Power Construction ›› 2024, Vol. 45 ›› Issue (5) : 1-8.

PDF(4216 KB)
PDF(4216 KB)
Electric Power Construction ›› 2024, Vol. 45 ›› Issue (5) : 1-8. DOI: 10.12204/j.issn.1000-7229.2024.05.001
Fundamental Theory and Key Technology of New Power System Resilience·Hosted by Professor XU Yin, Senior Engineer SHI Shanshan and Associate Professor WEI Wei·

Simulation Analysis of Fault Cascading Propagation in Power-Gas Coupling System During Extreme Events

Author information +
History +

Abstract

The continuous advancements in energy transformation has led to a tight coupling between power and natural gas systems, enabled by gas-fired units and electricity-driven gas facilities. In the face of unconventional disasters, bidirectional coupling between these systems may cause faults to propagate across the energy system, thereby exacerbating blackout crises. A notable example occurred in February 2021, when Texas, United States, experienced a chain failure between its power and natural gas systems due to extremely cold weather, resulting in significant losses and adverse social impacts. This study begins by analyzing the root causes of large-scale blackout events in Texas from the perspective of power-gas coupling. Subsequently, a power-gas coupling system is constructed, and an event-triggered information interaction mode is employed to examine the fault propagation process of the power-gas coupling system during extreme events through co-simulation. Finally, a fault-blocking strategy is proposed, with the simulation analysis demonstrating that this approach effectively suppresses fault propagation and enhances system defense.

Key words

power system / natural gas system / fault propagation / fault blocking

Cite this article

Download Citations
Yang DU , Jiayu LIU , Lingyu GUO , et al . Simulation Analysis of Fault Cascading Propagation in Power-Gas Coupling System During Extreme Events[J]. Electric Power Construction. 2024, 45(5): 1-8 https://doi.org/10.12204/j.issn.1000-7229.2024.05.001

References

[1]
魏泓屹, 卓振宇, 张宁, 等. 中国电力系统碳达峰·碳中和转型路径优化与影响因素分析[J]. 电力系统自动化, 2022, 46(19): 1-12.
WEI Hongyi, ZHUO Zhenyu, ZHANG Ning, et al. Transition path optimization and influencing factor analysis of carbon emission peak and carbon neutrality for power system of China[J]. Automation of Electric Power Systems, 2022, 46(19): 1-12.
[2]
黄雨涵, 丁涛, 李雨婷, 等. 碳中和背景下能源低碳化技术综述及对新型电力系统发展的启示[J]. 中国电机工程学报, 2021, 41(S1): 28-51.
HUANG Yuhan, DING Tao, LI Yuting, et al. Decarbonization technologies and inspirations for the development of novel power systems in the context of carbon neutrality[J], Proceedings of the CSEE, 2021, 41(S1): 28-51.
[3]
上海市人民政府关于印发《上海市能源发展“十四五”规划》的通知[EB/OL].(2022-04-16)[2023-04-10]. https://www.shanghai.gov.cn/202210zfwj/20220521/1d9410e2e7c4474da6618278ccb4528d.html.
[4]
杨自娟, 高赐威, 赵明. 电力-天然气网络耦合系统研究综述[J]. 电力系统自动化, 2018, 42(16): 21-31, 56.
YANG Zijuan, GAO Ciwei, ZHAO Ming. Review of coupled system between power and natural gas network[J]. Automation of Electric Power Systems, 2018, 42(16): 21-31, 56.
[5]
杜蕙, 林涛, 李轻言, 等. 电力-天然气互联系统协同安全机制: 现状, 问题与挑战[J]. 电网技术, 2022, 46(10): 3764-3776.
DU Hui, LIN Tao, LI Qingyan, et al. Coordinated security mechanism for electric-gas interconnect systems: status, problems, and challenges[J]. Power System Technology, 2022, 46(10): 3764-3776.
[6]
BILL Magness. Review of February 2021 extreme cold weather event:ERCOT Presentation[EB/OL]. Texas:ERCOT, 2021(2021-08-23)[2023-04-10]. http://www.ercot.com/content/wcm/key_documents_lists/225373/2.2_REVISED_ERCOT_Presentation.pdf.
[7]
安学民, 孙华东, 张晓涵, 等. 美国得州“2.15” 停电事件分析及启示[J]. 中国电机工程学报, 2021, 41(10): 3407-3415, 3666.
AN Xuemin, SUN Huadong, ZHANG Xiaohan, et al. Analysis and lessons of Texas power outage event on February 15, 2021[J]. Proceedings of the CSEE, 2021, 41(10): 3407-3415, 3666.
[8]
王伟胜, 林伟芳, 何国庆, 等. 美国得州2021年大停电事故对我国新能源发展的启示[J]. 中国电机工程学报, 2021, 41(12): 4033-4042.
WANG Weisheng, LIN Weifang, HE Guoqing, et al. Enlightenment of 2021 Texas blackout to the renewable energy development in China[J]. Proceedings of the CSEE, 2021, 41(12): 4033-4042.
[9]
张玥, 谢光龙, 张全, 等. 美国得州2·15大停电事故分析及对中国电力发展的启示[J]. 中国电力, 2021, 54(4): 192-198, 206.
ZHANG Yue, XIE Guanglong, ZHANG Quan, et al. Analysis of 2·15 power outage in Texas and its implications for the power sector of China[J]. Electric Power, 2021, 54(4): 192-198, 206.
[10]
李政麒, 蔡晔, 曹一家, 等. 美国得州 “2·15” 停电事故分析及对中国新型电力系统供电充裕度的启示[J]. 电力科学与技术学报, 2022, 37(5): 17-24.
LI Zhengqi, CAI Ye, CAO Yijia, et al. Analysis of “2·15” blackout in Texas and its enlightenment to China’s new power system supply adequacy[J]. Journal of Electric Power Science and Technology, 2022, 37(5): 17-24.
[11]
冷喜武. 美国得州2021轮停事故分析及其对中国电网改革的启示[J]. 发电技术, 2021, 42(2): 151-159.
Abstract
2月15日—16日,受冬季暴风影响,得州遭遇大规模轮流停电,约450万人口用电受到影响,现货市场电价大幅飙升,经济社会秩序受到严重影响。2月24日得克萨斯州电力可靠性委员会(ERCOT)发布了关于停电事件的首份事故报告。结合该份事故报告,简单介绍了得州电网的基本情况和此次轮停事件的始末,详细分析了导致停电事件的原因,并结合我国电网实际,重点提出了我国电网在实现“碳达峰、碳中和”目标下的发展建议。
LENG Xiwu. The analysis of 2021 Texas’ rotating blackout incident and its enlightenment to the reform of China power grid[J]. Power Generation Technology, 2021, 42(2): 151-159.

On February 15 and 16, 2021, a winter storm swept across Texas, causing a destroying rotating blackout. The blackout has affected about 4.5 million residents, and the price on spot power market soared sharply, resulting in a great damage on the economic and social order. On February 24, the Electric Reliability Council of Texas (ERCOT) released its first report of the blackout incident. Based on the report, a brief overview of Texas power grid and the development process of the whole blackout event were introduced firstly. Then, this paper analyzed the causes in detail. Finally, some suggestions on how to construct China power gird with the goal of achieving "carbon peak, carbon neutral" were proposed.

[12]
严道波, 文劲宇, 杜治, 等. 2021年得州大停电事故分析及其对电网规划管理的启示[J]. 电力系统保护与控制, 2021, 49(9): 121-128.
YAN Daobo, WEN Jinyu, DU Zhi, et al. Analysis of Texas blackout in 2021 and its enlightenment to power system planning management[J]. Power System Protection and Control, 2021, 49(9): 121-128.
[13]
侯验秋, 丁一, 包铭磊, 等. 电-气耦合视角下德州大停电事故分析及对我国新型电力系统发展启示[J]. 中国电机工程学报, 2022, 42(21): 7764-7775.
HOU Yanqiu, DING Yi, BAO Minglei, et al. Analysis of Texas blackout from the perspective of electricity-gas coupling and its enlightenment to the development of China’s new power system[J]. Proceedings of the CSEE, 2022, 42(21): 7764-7775.
[14]
刘泽扬, 荆朝霞. 美国得州2·15停电初步分析及其对我国电力市场建设的启示[J]. 发电技术, 2021, 42(1): 131-139.
Abstract
2021年2月15—19日,美国得克萨斯州(简称“得州”)电网出现了轮流削减负荷运行的停电事故,引起了全球广泛关注。介绍了得州电网、电力市场概况,以时间为主线梳理了停电事故的发生与发展过程,以及事故期间的电力市场运行状况,初步分析了事故中供需不平衡、高电价、财务危机三大问题产生的原因。最后,总结停电事故的经验教训,提出对我国电力市场建设的相关启示。
LIU Zeyang, JING Zhaoxia. Preliminary analysis of the 2·15 power outage in Texas, U.S. and its enlightenment to the construction of China’s electricity market[J]. Power Generation Technology, 2021, 42(1): 131-139.

From February 15 to 19, 2021, a rotating outage due to load-shed occurred in the power grid of Texas in the United States, causing widespread global concern. In this paper, an overview of the power grid and electricity market in Texas was introduced firstly. Then, this paper sorted out the occurrence and development process of the accident with time as the main line, and paid attention to the operation status of the electricity market during the accident period. Moreover, the causes of the three major problems such as imbalance between supply and demand, high electricity price, and financial crisis in the accident were analyzed. Finally, this paper summarized the experience and lessons of power outages, and put forward relevant enlightenments to the construction of China's electricity market.

[15]
钟海旺, 张广伦, 程通, 等. 美国得州2021年极寒天气停电事故分析及启示[J]. 电力系统自动化, 2022, 46(6): 1-9.
ZHONG Haiwang, ZHANG Guanglun, CHENG Tong, et al. Analysis and enlightenment of extremely cold weather power outage in Texas, U.S. in 2021[J]. Automation of Electric Power Systems, 2022, 46(6): 1-9.
[16]
郭志沛, 庄磊. 得州大停电对我国能源安全的启示[J]. 中国储运, 2021(7): 187-188.
GUO Zhipei, ZHUANG Lei. Enlightenment of Texas blackout on China’s energy security[J]. China Storage & Transport, 2021(7): 187-188.
[17]
FERC, NERC and Regional Entity Staff Report. The February 2021 cold weather outages in Texas and the South Central United States[EB/OL]. [2023-04-10]. https://www.naesb.org/pdf4/ferc_nerc_regional_entity_staff_report_Feb2021_cold_weather_outages_111621.pdf.
[18]
范旭强, 吴谋远, 陈嘉茹, 等. 美国得州停电事件对我国能源安全的启示[J]. 国际石油经济, 2021, 29(3): 15-20.
FAN Xuqiang, WU Mouyuan, CHEN Jiaru, et al. The electricity deliveries disrupted in Texas and its enlightenment to China’s energy security[J]. International Petroleum Economics, 2021, 29(3): 15-20.
[19]
乔铮, 郭庆来, 孙宏斌. 电力-天然气耦合系统建模与规划运行研究综述[J]. 全球能源互联网, 2020, 3(1): 14-26.
QIAO Zheng, GUO Qinglai, SUN Hongbin. Research survey on the modeling, planning and operational analysis of electricity-natural gas coupling system[J]. Journal of Global Energy Interconnection, 2020, 3(1): 14-26.
[20]
ERCOT. Extreme cold weather expected to result in record electric use in ERCOT region[EB/OL]. Texas: ERCOT, 2021(2021-08-23) [2023-04-10]. http://www.ercot.com/news/releases/show/224996.
[21]
The Railroad Commission of Texas. Emergency order[R/OL]. Texas: The Railroad Commission of Texas, 2021.[2023-04-10]. https://rrc.texas.gov/media/cw3ewubr/emergency-order-021221-final-signed.pdf.
[22]
ZIMMERMAN R D, MURILLO-SÁNCHEZ C E, THOMAS R J. MATPOWER: steady-state operations, planning, and analysis tools for power systems research and education[J]. IEEE Transactions on Power Systems, 2011, 26(1): 12-19.
[23]
PAMBOUR K A, CAKIR ERDENER B, BOLADO-LAVIN R, et al. SAInt: a novel quasi-dynamic model for assessing security of supply in coupled gas and electricity transmission networks[J]. Applied Energy, 2017, 203: 829-857.
[24]
BAO Z J, ZHANG Q H, WU L, et al. Cascading failure propagation simulation in integrated electricity and natural gas systems[J]. Journal of Modern Power Systems and Clean Energy, 2020, 8(5): 961-970.
[25]
CHEN S, WEI Z N, SUN G Q, et al. Steady state and transient simulation for electricity-gas integrated energy systems by using convex optimisation[J]. IET Generation, Transmission & Distribution, 2018, 12(9): 2199-2206.
[26]
FREEMAN Gerad, APT Jay, DWORKIN Michael. The natural gas grid needs better monitoring[J]. Issues in Science and Technology, 2018, 34(4):79-84.
[27]
阚君, 许寅, 王颖, 等. 计及输电网和输气网双向耦合特性的机组恢复优化决策方法[J]. 中国电机工程学报, 2023, 43(19): 7457-7466.
KAN Jun, XU Yin, WANG Ying, et al. Optimal decision-making method for generator start-up considering interdependencies between power and gas transmission networks[J]. Proceedings of the CSEE, 2023, 43(19): 7457-7466.
[28]
CETINAY H, SOLTAN S, KUIPERS F A, et al. Comparing the effects of failures in power grids under the AC and DC power flow models[J]. IEEE Transactions on Network Science and Engineering, 2018, 5(4): 301-312.
[29]
包铭磊, 王可欣, 丁一, 等. 考虑电、气备用协同配置的故障传播影响抑制策略[J]. 电力系统自动化, 2022, 46(5): 40-50.
BAO Minglei, WANG Kexin, DING Yi, et al. Containment strategy of failure propagation impacts considering coordinated allocation of power and natural gas reserve[J]. Automation of Electric Power Systems, 2022, 46(5): 40-50.
[30]
宋晨辉, 冯健, 杨东升, 等. 考虑系统耦合性的综合能源协同优化[J]. 电力系统自动化, 2018, 42(10): 38-45, 86.
SONG Chenhui, FENG Jian, YANG Dongsheng, et al. Collaborative optimization of integrated energy considering system coupling[J]. Automation of Electric Power Systems, 2018, 42(10): 38-45, 86.
[31]
范宏, 鲁家阳, 陆骁霄. 考虑激励型需求响应的多区域综合能源系统协同规划[J]. 电测与仪表, 2023, 60(9): 117-124, 187.
FAN Hong, LU Jiayang, LU Xiaoxiao. Coordinated planning of multi-region integrated energy system considering incentive demand response[J]. Electrical Measurement & Instrumentation, 2023, 60(9): 117-124, 187.

Funding

National Natural Science Foundation of China(52277072)
PDF(4216 KB)

Accesses

Citation

Detail

Sections
Recommended

/