HVDC Line Fault Identification Based on the Gram Angle Difference Field and Transfer Residual Network

Yan ZHAO, Yan SUN, Yonghui NIE

Electric Power Construction ›› 2024, Vol. 45 ›› Issue (8) : 118-127.

PDF(9261 KB)
PDF(9261 KB)
Electric Power Construction ›› 2024, Vol. 45 ›› Issue (8) : 118-127. DOI: 10.12204/j.issn.1000-7229.2024.08.011
Smart Grid

HVDC Line Fault Identification Based on the Gram Angle Difference Field and Transfer Residual Network

Author information +
History +

Abstract

To improve the identification accuracy of high-voltage direct current (HVDC) transmission line faults under conditions of limited sample size and high impedance, a fault identification method for high-voltage direct current transmission lines that combines the gram angle difference field (GADF) and transfer learning using Residual Network 18 (ResNet18-TL) is proposed. First, one-dimensional time-domain signals were transformed into two-dimensional angle-difference field maps using GADF. Subsequently, the weight parameters of a ResNet18 model pre-trained on the source domain ImageNet-1K dataset were transferred to a ResNet18 model with angle-field maps as the target domain, enabling the adaptive extraction of fault-related features for fault-type recognition. Experimental results demonstrate that, compared with other deep learning methods, the proposed approach can correctly identify internal positive-polarity ground faults, internal negative-polarity ground faults, internal bipolar short-circuit faults, and external faults under small-sample conditions, achieving an accuracy of 99.67%. Additionally, it exhibits a strong tolerance to transient resistance, noise resistance, and generalization capabilities.

Key words

HVDC line / Gram angle difference field(GADF) / Resnet18 / transfer learning / fault identification

Cite this article

Download Citations
Yan ZHAO , Yan SUN , Yonghui NIE. HVDC Line Fault Identification Based on the Gram Angle Difference Field and Transfer Residual Network[J]. Electric Power Construction. 2024, 45(8): 118-127 https://doi.org/10.12204/j.issn.1000-7229.2024.08.011

References

[1]
张哲任, 徐政, 黄莹, 等. 藏东南光伏基地全直流汇集送出方案及其控制策略研究[J]. 浙江电力, 2023, 42(6): 23-32.
ZHANG Zheren, XU Zheng, HUANG Ying, et al. Research on the full DC collection and transmission scheme for the photovoltaic base in Southeast Tibet and its control strategy[J]. Zhejiang Electric Power, 2023, 42(6): 23-32.
[2]
邓楠, 郝亮亮, 和敬涵, 等. 受端混联型多端直流输电系统逆变侧交流故障特性分析及协调控制策略[J]. 电力系统保护与控制, 2023, 51(10): 54-64.
DENG Nan, HAO Liangliang, HE Jinghan, et al. AC fault characteristics analysis and coordinated control strategy on the inverter side of a receiving-end hybrid multi-terminal HVDC system[J]. Power System Protection and Control, 2023, 51(10): 54-64.
[3]
王泽青, 夏成军, 赖胜杰, 等. 混合型MMC非闭锁型直流故障穿越的故障等效模型[J]. 电力工程技术, 2023, 42(2): 103-111.
WANG Zeqing, XIA Chengjun, LAI Shengjie, et al. Fault equivalent model for non-blocking DC fault ride-through of hybrid MMC[J]. Electric Power Engineering Technology, 2023, 42(2): 103-111.
[4]
秦艳辉, 尹纯亚, 段青熙, 等. 直流近区系统故障下的暂态电压特性分析及支撑策略研究[J]. 电力系统保护与控制, 2023, 51(17): 169-177.
QIN Yanhui, YIN Chunya, DUAN Qingxi, et al. Research on transient voltage characteristics and support strategy under a fault occurred in the near-zone of HVDC sending system[J]. Power System Protection and Control, 2023, 51(17): 169-177.
[5]
李松浓, 晏尧, 向菲, 等. 光伏直流系统故障电弧检测方法研究综述[J]. 电测与仪表, 2024, 61(2): 10-16.
LI Songnong, YAN Yao, XIANG Fei, et al. A comprehensive review on detection method for DC fault arc in photovoltaic system[J]. Electrical Measurement & Instrumentation, 2024, 61(2): 10-16.
[6]
孙天甲, 刘海洋. 大规模交直流混联电网送端交流故障对受端电网的影响[J]. 浙江电力, 2022, 41(7): 18-24.
SUN Tianjia, LIU Haiyang. Influence of AC fault at sending end on receiving-end networks of large-scale AC/DC hybrid power grid[J]. Zhejiang Electric Power, 2022, 41(7): 18-24.
[7]
ZOU G B, FENG Q, HUANG Q, et al. A fast protection scheme for VSC based multi-terminal DC grid[J]. International Journal of Electrical Power & Energy Systems, 2018, 98: 307-314.
[8]
李钊, 邹贵彬, 许春华, 等. 基于S变换的HVDC输电线路纵联保护方法[J]. 中国电机工程学报, 2016, 36(5): 1228-1235.
LI Zhao, ZOU Guibin, XU Chunhua, et al. S-transform based pilot protection method for HVDC transmission lines[J]. Proceedings of the CSEE, 2016, 36(5): 1228-1235.
[9]
安娜, 束洪春, 臧永刚. 基于经验模态分解的直流输电线路故障识别方法[J]. 电气应用, 2017, 36(1): 60-65.
AN Na, SHU Hongchun, ZANG Yonggang. Fault identification method of DC transmission line based on empirical mode decomposition[J]. Electrotechnical Application, 2017, 36(1): 60-65.
[10]
刘晓军, 岳爽, 杨冬锋, 等. 基于单环定理的HVDC输电线路纵联保护方法[J]. 电网技术, 2021, 45(1): 162-169.
LIU Xiaojun, YUE Shuang, YANG Dongfeng, et al. Single ring theorem based pilot protection method for HVDC transmission lines[J]. Power System Technology, 2021, 45(1): 162-169.
[11]
洪翠, 连淑婷, 黄晟, 等. 基于改进经验小波变换和改进多视角深度矩阵分解的直流配电网故障检测方案[J]. 电力自动化设备, 2022, 42(6): 8-15, 29.
HONG Cui, LIAN Shuting, HUANG Sheng, et al. Fault detection scheme based on IEWT and IMDMF for DC distribution network[J]. Electric Power Automation Equipment, 2022, 42(6): 8-15, 29.
[12]
LI W L, MONTI A, PONCI F. Fault detection and classification in medium voltage DC shipboard power systems with wavelets and artificial neural networks[J]. IEEE Transactions on Instrumentation and Measurement, 2014, 63(11): 2651-2665.
[13]
GHASHGHAEI S, AKHBARI M. Fault detection and classification of an HVDC transmission line using a heterogenous multi-machine learning algorithm[J]. IET Generation, Transmission & Distribution, 2021, 15(16): 2319-2332.
[14]
LETERME W, PIROOZ AZAD S, VAN HERTEM D. A local backup protection algorithm for HVDC grids[J]. IEEE Transactions on Power Delivery, 2016, 31(4): 1767-1775.
[15]
李梓玮, 许丽娟. 基于概率神经网络的直流滤波器电容器开路故障定位方法[J]. 电测与仪表, 2023, 60(1): 48-56.
LI Ziwei, XU Lijuan. Open-circuit fault location method of DC filter capacitor based on probabilistic neural network[J]. Electrical Measurement & Instrumentation, 2023, 60(1): 48-56.
[16]
叶艳军, 陈水耀, 潘武略, 等. 基于控保信号序列化和力引导算法的高压直流故障智能诊断可视化技术研究[J]. 电力系统保护与控制, 2023, 51(19): 155-163.
YE Yanjun, CHEN Shuiyao, PAN Wulüe, et al. Intelligent diagnosis and visualization technology for high voltage DC faults based on control and protection signal serialization and a force guidance algorithm[J]. Power System Protection and Control, 2023, 51(19): 155-163.
[17]
李强, 陈潜, 武霁阳, 等. 基于集成学习的高压直流输电系统故障诊断[J]. 电力系统保护与控制, 2023, 51(16): 168-178.
LI Qiang, CHEN Qian, WU Jiyang, et al. Ensemble learning-based HVDC systems fault diagnosis[J]. Power System Protection and Control, 2023, 51(16): 168-178.
[18]
汪洋, 杨仕伟, 王宝华, 等. 基于深度置信网络的交直流配电网直流故障检测技术[J]. 电力工程技术, 2023, 42(1): 251-259.
WANG Yang, YANG Shiwei, WANG Baohua, et al. DC fault detection technology for AC/DC distribution network based on DBN[J]. Electric Power Engineering Technology, 2023, 42(1): 251-259.
[19]
朱刘柱, 王绪利, 马静, 等. 基于小波包分解与循环神经网络的综合能源系统短期负荷预测[J]. 电力建设, 2020, 41(12): 131-138.
ZHU Liuzhu, WANG Xuli, MA Jing, et al. Short-term load forecast of integrated energy system based on wavelet packet decomposition and recurrent neural network[J]. Electric Power Construction, 2020, 41(12): 131-138.
[20]
纪鹏志, 李光肖, 王琳, 等. 基于Transformer深度学习网络的主动配电网多元源荷灾损辨识方法[J]. 电力建设, 2023, 44(3): 56-65.
Abstract
近年来不断增多的强台风天气给沿海及部分内陆地区配电网带来了愈发严重的损失,造成大规模重要负荷长时间失电,提高含多元源荷的主动配电网恢复能力成为亟待解决的问题。针对现有配电网负荷损失评估方法在强台风弱通信条件下无法准确获取节点信息而造成灾损分析精度不高的问题,提出一种基于Transformer深度学习网络的主动配电网多元源荷灾损辨识方法,充分利用深度学习网络去模型化的特点并发挥其在灾损预测精度方面的优势。考虑地面粗糙程度和高度,结合弱通信条件下的台风灾害气象数据,构建主动配电网所处地理环境的风速、降雨强度等气象信息修正模型;在此基础上考虑强台风致灾机理和主动配电网拓扑结构,利用Transformer深度学习方法构建配电网灾损辨识模型,实现强台风弱通信条件下的主动配电网多元源荷灾损辨识精度提升。通过对改进的IEEE 33节点主动配电网算例进行仿真测试,对损失负荷、损坏节点数等特征量进行计算,验证了所提主动配电网多元源荷灾损辨识方法能够满足台风多发配电网灾损评估精度。
JI Pengzhi, LI Guangxiao, WANG Lin, et al. Transformer-based evaluation method of power outage in active distribution networks with multiple sources and loads[J]. Electric Power Construction, 2023, 44(3): 56-65.

In recent years, the increasing strong typhoon weather has brought more and more serious losses to the distribution network in coastal and some inland areas, resulting in large-scale power loss of important load for a long time. Improving the recovery capacity of active distribution networks containing multiple sources and loads has become an urgent problem to be solved. To deal with the problem that the existing power outage evaluation methods of distribution networks failed to obtain the information of the nodes, this paper proposes a novel evaluation method of power outage in active distribution networks containing multiple sources and loads on the basis of deep learning method, such as the Transformer model. Considering the ground roughness and height, meteorological information correction model of the geographical environment of the active distribution network is constructed combined with the typhoon disaster meteorological data under the condition of weak communication. On this basis, considering the disaster mechanism of strong typhoons and the topology of active distribution networks, the Transformer model is used to construct the power outage model of active distribution networks to improve the accuracy of power outage evaluation in active distribution networks containing multiple sources and loads. Through the simulation tests of the improved IEEE 33-node active distribution network, it is verified that the proposed power outage evaluation method for active distribution networks can meet the accuracy requirement of power outage evaluation in typhoon-prone distribution networks.

[21]
汪光远, 杨德先, 林湘宁, 等. 基于深度置信网络的柔性直流配电网高灵敏故障辨识策略[J]. 电力系统自动化, 2021, 45(17): 180-188.
WANG Guangyuan, YANG Dexian, LIN Xiangning, et al. High-sensitivity fault identification strategy for flexible DC distribution network based on deep belief networks[J]. Automation of Electric Power Systems, 2021, 45(17): 180-188.
[22]
赵妍, 孙硕, 柳旭, 等. 基于改进CNN-LSTM的电力系统宽频振荡辨识[J]. 智慧电力, 2022, 50(2): 48-54, 96.
ZHAO Yan, SUN Shuo, LIU Xu, et al. Identification of power system wide-band oscillation based on improved CNN-LSTM[J]. Smart Power, 2022, 50(2): 48-54, 96.
[23]
王浩, 杨东升, 周博文, 等. 基于并联卷积神经网络的多端直流输电线路故障诊断[J]. 电力系统自动化, 2020, 44(12): 84-92.
WANG Hao, YANG Dongsheng, ZHOU Bowen, et al. Fault diagnosis of multi-terminal HVDC transmission line based on parallel convolutional neural network[J]. Automation of Electric Power Systems, 2020, 44(12): 84-92.
[24]
翟海保, 王兴志, 葛敏辉, 等. 基于改进卷积神经网络的输电线路故障诊断方法[J]. 电气自动化, 2021, 43(2): 105-108.
ZHAI Haibao, WANG Xingzhi, GE Minhui, et al. Fault diagnosis method for transmission lines based on the improved convolutional neural network[J]. Electrical Automation, 2021, 43(2): 105-108.
[25]
GUO M F, YANG N C, CHEN W F. Deep-learning-based fault classification using Hilbert-Huang transform and convolutional neural network in power distribution systems[J]. IEEE Sensors Journal, 2019, 19(16): 6905-6913.
[26]
王晓东, 张昊, 郭海宇, 等. 光伏电站直流输电线路早期绝缘故障识别与定位[J]. 太阳能学报, 2023, 44(8): 246-252.
Abstract
直流输电线路发生早期绝缘故障时电流波动小、故障现象不明显,难以快速识别以采取保护措施,光伏电站线路拓扑结构复杂,不易准确定位故障发生位置。该文提出一种连续小波变换和混合神经网络模型结合的方法,可在尽可能短的时间完成故障识别与定位。该方法首先利用连续小波变换对暂态零模电流信号提取二维时频矩阵特征,压缩为彩色图像;然后,将图像送入神经网络模型中进行训练。该混合神经网络模型通过结合卷积神经网络和门控循环单元,提高识别精度并减少训练时间。最后,为验证本方法的优势,在高噪声环境下选取4条直流输电线路分别进行4种时频分析方法、3种神经网络模型仿真对比后,又对早期绝缘故障单独进行识别仿真试验,结果表明该方法可有效识别出早期绝缘故障并定位至发生线路,且具有较强的抗噪能力。
WANG Xiaodong, ZHANG Hao, GUO Haiyu, et al. Early insulation fault identification and location of dc transmission lines in photovoltaic power stations[J]. Acta Energiae Solaris Sinica, 2023, 44(8): 246-252.
When an early insulation fault occurs in a DC transmission line, the current fluctuation is small and the fault phenomenon is not obvious, so it is difficult to quickly identify and take protective measures. The topology of the photovoltaic power station line is complex, and it is difficult to accurately locate the fault location. In this paper, a method combining continuous wavelet transform and hybrid neural network model is proposed to identify and locate faults in the shortest possible time. The method first uses continuous wavelet transform to extract two-dimensional time-frequency matrix features from the transient zero-mode current signal, compresses it into a color image, and then sends the image to a neural network model for training. This hybrid neural network model improves recognition accuracy and reduces training time by combining convolutional neural networks and gated recurrent units. Finally, in order to verify the advantages of this method, four HVDC transmission lines are selected in a high noise environment to carry out four time-frequency analysis methods and three neural network model simulation comparisons, and then a separate simulation test is carried out to identify early insulation faults. The results show that this method can effectively identify the early insulation fault and locate the line where it occurs, and has strong anti-noise ability.
[27]
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2016: 770-778.
[28]
ZHUANG F Z, QI Z Y, DUAN K Y, et al. A comprehensive survey on transfer learning[J]. Proceedings of the IEEE, 2021, 109(1): 43-76.
[29]
韩昆仑, 蔡泽祥, 徐敏, 等. 高压直流输电线路微分欠压保护特征量动态特性分析与整定[J]. 电力自动化设备, 2014, 34(2): 114-119.
HAN Kunlun, CAI Zexiang, XU Min, et al. Dynamic characteristic analysis and setting of characteristic parameters of differential under-voltage protection for HVDC transmission line[J]. Electric Power Automation Equipment, 2014, 34(2): 114-119.

Funding

National Natural Science Foundation of China(61973072)
PDF(9261 KB)

Accesses

Citation

Detail

Sections
Recommended

/