Risk Assessment of Renewable Energy Power Systems via Graph Multi-Attention Networks

BAI Yunpeng, ZHANG Zhiyan, XU Cai, GUO Chuangxin, LIU Zhuping, ZHU Wenhao

Electric Power Construction ›› 2025, Vol. 46 ›› Issue (1) : 147-157.

PDF(1409 KB)
PDF(1409 KB)
Electric Power Construction ›› 2025, Vol. 46 ›› Issue (1) : 147-157. DOI: 10.12204/j.issn.1000-7229.2025.01.013
Renewable Energy and Energy Storage

Risk Assessment of Renewable Energy Power Systems via Graph Multi-Attention Networks

Author information +
History +

Abstract

The accelerating global energy transition and rapid expansion of renewable energy sources,presents both opportunities and challenges. This transformation has introduced new concerns related to the “safety and stability” of power grids,particularly as large-scale integration of renewable energy sources such as wind and solar power results in issues including frequency overruns and voltage instability. This study explores the impact of renewable energy output and weather conditions on equipment failures and establishes a comprehensive scenario for power grids under renewable energy integration. A novel multihead graph-attention neural network model is proposed that integrates graph neural networks with multihead attention mechanisms. By incorporating parallel training methods,the proposed model is utilized in renewable energy power systems with the aim of improving risk assessment efficiency while maintaining accuracy in grid risk assessments. The model is trained and tested using data obtained from a provincial power grid within an electrical power simulation system. Results,derived from integrating real-world data from a provincial power grid in China with that of the electrical power simulation system,demonstrate that the attention-based graph neural network method approach substantially improves the robustness and efficiency of risk assessments compared to other artificial intelligence methods. This approach shows considerable promise in renewable energy power systems for enhancing risk assessment.

Key words

renewable energy power systems / deep learning / attentional mechanism / risk assessment / risk analysis

Cite this article

Download Citations
BAI Yunpeng , ZHANG Zhiyan , XU Cai , et al . Risk Assessment of Renewable Energy Power Systems via Graph Multi-Attention Networks[J]. Electric Power Construction. 2025, 46(1): 147-157 https://doi.org/10.12204/j.issn.1000-7229.2025.01.013

References

[1]
张智刚, 康重庆. 碳中和目标下构建新型电力系统的挑战与展望[J]. 中国电机工程学报, 2022, 42(8): 2806-2819.
ZHANG Zhigang, KANG Chongqing. Challenges and prospects for constructing the new-type power system towards a carbon neutrality future[J]. Proceedings of the CSEE, 2022, 42(8): 2806-2819.
[2]
舒印彪, 陈国平, 贺静波, 等. 构建以新能源为主体的新型电力系统框架研究[J]. 中国工程科学, 2021, 23(6): 61-69.
Abstract
构建以新能源为主体的新型电力系统,既是我国电力系统转型升级的重要方向,也是实现碳达峰、碳中和目标的关键途径。本文分析了电力系统转型带来的变化、问题及挑战,阐述了新型电力系统的内涵、构建原则与思路;根据电力系统发展的技术特征、新能源接入规模,合理划分新型电力系统的发展阶段并针对性提出各阶段的发展建议。研究认为,新型电力系统以新能源为电能供给主体,可满足不断增长的清洁用电需求,兼具高度的安全性、开放性、适应性;相关系统构建是一项系统性工程,应遵循电力系统的技术演进规律与特征,充分利用成熟技术、存量系统并深入挖掘潜力,同步着力研发新兴技术,积极稳妥并循序渐进实施重大转型。
SHU Yinbiao, CHEN Guoping, HE Jingbo, et al. Building a new electric power system based on new energy sources[J]. Strategic Study of CAE, 2021, 23(6): 61-69.

Building a new electric power system that is based on new energy sources is an important direction for power system transformation and upgrading in China, and it is critical for peaking carbon emissions and achieving carbon neutrality. In this study, we analyze the changes and challenges that are brought by power system transformation and elaborate on the connotation and building principles of a new electric power system. Moreover, we categorize the development of the new system into stages and propose development suggestions for each stage considering the technical features of the system and the new energy access scale. The new electric power system proposed in this study can satisfy the increasing demand for clean power as it primarily uses new energy sources and it has the features of high safety, openness, and adaptability. Building the new electric power system should follow the technical evolution law and characteristics of power systems; it should further exploit the potentials of mature technologies and current power systems. Meanwhile, emerging technologies should be researched and developed.

[3]
郭创新, 刘祝平, 冯斌, 等. 新型电力系统风险评估研究现状及展望[J]. 高电压技术, 2022, 48(9): 3394-3404.
GUO Chuangxin, LIU Zhuping, FENG Bin, et al. Research status and prospect of new-type power system risk assessment[J]. High Voltage Engineering, 2022, 48(9): 3394-3404.
[4]
李建林, 丁子洋, 游洪灏, 等. 构网型储能支撑新型电力系统稳定运行研究[J]. 高压电器, 2023, 59(7): 1-11.
LI Jianlin, DING Ziyang, YOU Honghao, et al. Research on stable operation of new power system supported by grid-forming energy storage system[J]. High Voltage Apparatus, 2023, 59(7): 1-11.
[5]
胡博, 谢开贵, 邵常政, 等. 双碳目标下新型电力系统风险评述: 特征、指标及评估方法[J]. 电力系统自动化, 2023, 47(5): 1-15.
HU Bo, XIE Kaigui, SHAO Changzheng, et al. Commentary on risk of new power system under goals of carbon emission peak and carbon neutrality: characteristics, indices and assessment methods[J]. Automation of Electric Power Systems, 2023, 47(5): 1-15.
[6]
LI W Y. Risk assessment of power systems: models, methods, and applications[M]. Wiley-IEEE Press, 2005.
[7]
冯永青, 张伯明, 吴文传, 等. 基于可信性理论的电力系统运行风险评估 (一)运行风险的提出与发展[J]. 电力系统自动化, 2006, 30(1): 17-23.
FENG Yongqing, ZHANG Boming, WU Wenchuan, et al. Power system operation risk assessment based on credibility theory part one propound and development of operation risk assessment[J]. Automation of Electric Power Systems, 2006, 30(1): 17-23.
[8]
LO BRANO V, ORIOLI A, CIULLA G, et al. Quality of wind speed fitting distributions for the urban area of Palermo, Italy[J]. Renewable Energy, 2011, 36(3): 1026-1039.
[9]
鲍颜红, 张金龙, 徐泰山, 等. 考虑风电出力不确定性的在线暂态稳定风险评估方法[J]. 南方电网技术, 2021, 15(11): 42-48.
BAO Yanhong, ZHANG Jinlong, XU Taishan, et al. Online transient stability risk assessment method considering the uncertainty of wind power output[J]. Southern Power System Technology, 2021, 15(11): 42-48.
[10]
王彩霞, 鲁宗相, 乔颖, 等. 基于非参数回归模型的短期风电功率预测[J]. 电力系统自动化, 2010, 34(16): 78-82, 91.
WANG Caixia, LU Zongxiang, QIAO Ying, et al. Short-term wind power forecast based on non-parametric regression model[J]. Automation of Electric Power Systems, 2010, 34(16): 78-82, 91.
[11]
赵书强, 金天然, 李志伟, 等. 考虑时空相关性的多风电场出力场景生成方法[J]. 电网技术, 2019, 43(11): 3997-4004.
ZHAO Shuqiang, JIN Tianran, LI Zhiwei, et al. Wind power scenario generation for multiple wind farms considering temporal and spatial correlations[J]. Power System Technology, 2019, 43(11): 3997-4004.
[12]
马燕峰, 杨小款, 王子建, 等. 基于风险价值的大规模风电并网电力系统运行风险评估[J]. 电网技术, 2021, 45(3): 849-855.
MA Yanfeng, YANG Xiaokuan, WANG Zijian, et al. Operation risk assessment for power system with large-scale wind power integration based on value at risk[J]. Power System Technology, 2021, 45(3): 849-855.
[13]
陈冰松. 基于支持向量机的电网调度风险评估研究[D]. 杭州: 浙江大学, 2019.
CHEN Bingsong. Research on risk assessment of power grid dispatching based on support vector machine[D]. Hangzhou: Zhejiang University, 2019.
[14]
王训哲. 基于随机森林算法的电网安全风险评估[D]. 武汉: 武汉大学, 2019.
WANG Xunzhe. Power grid security risk assessment based on random forest algorithm[D]. Wuhan: Wuhan University, 2019.
[15]
陈泰龙, 马玫, 陈少磊, 等. 基于多尺度优化卷积神经网络的配电网电缆局部放电图像识别[J]. 供用电, 2023, 40(11): 105-111.
CHEN Tailong, MA Mei, CHEN Shaolei, et al. Cable fault diagnosis of distribution network based on multi-scale optimized convolutional neural network[J]. Distribution & Utilization, 2023, 40(11): 105-111.
[16]
荆志朋, 柴林杰, 胡诗尧. 基于改进LSTM-VAE的配电网异常负荷检测方法研究[J]. 电测与仪表, 2024, 61(9): 71-76.
JING Zhipeng, CHAI Linjie, HU Shiyao. Research on abnormal load detection method for distribution network based on improved LSTM-VAE[J]. Electrical Measurement & Instrumentation, 2024, 61(9): 71-76.
[17]
陈晓华, 吴杰康. 基于北方苍鹰优化算法优化长短期记忆神经网络的光伏发电功率短期预测[J]. 山东电力技术, 2024, 51(10): 10-17.
CHEN Xiaohua, WU Jiekang. Photovoltaic power short-term prediction based on long short-term memory neural network optimized by northern goshawk optimization algorithm[J]. Shandong Electric Power, 2024, 51(10): 10-17.
[18]
谢宏, 张华赢, 梁晓锐, 等. 基于关系图卷积神经网络的新能源配电台区拓扑识别方法[J]. 电测与仪表, 2024, 61(7): 94-102.
XIE Hong, ZHANG Huaying, LIANG Xiaorui, et al. A topology identification method based on relational-graph convolutional network for distribution substation area with high renewables[J]. Electrical Measurement & Instrumentation, 2024, 61(7): 94-102.
[19]
郝蛟, 林宏, 李雨森, 等. 基于改进多层感知机的电网运行风险评估方法[J]. 现代电力, 2023, 40(4): 474-483.
HAO Jiao, LIN Hong, LI Yusen, et al. A method to assess power grid operation risk based on improved multi-layer perceptron[J]. Modern Electric Power, 2023, 40(4): 474-483.
[20]
徐浩, 姜新雄, 刘志成, 等. 基于概率预测的电网静态安全运行风险评估及主动调控策略[J]. 电力系统自动化, 2022, 46(1): 182-191.
XU Hao, JIANG Xinxiong, LIU Zhicheng, et al. Probability prediction based risk assessment and proactive regulation and control strategy for static operation safety of power grid[J]. Automation of Electric Power Systems, 2022, 46(1): 182-191.
[21]
王铮澄, 周艳真, 郭庆来, 等. 考虑电力系统拓扑变化的消息传递图神经网络暂态稳定评估[J]. 中国电机工程学报, 2021, 41(7): 2341-2350.
WANG Zhengcheng, ZHOU Yanzhen, GUO Qinglai, et al. Transient stability assessment of power system considering topological change: a message passing neural network-based approach[J]. Proceedings of the CSEE, 2021, 41(7): 2341-2350.
[22]
吕颖, 鲁广明, 谢昶, 等. 考虑大规模集中接入风电功率波动相关性的在线概率安全评估[J]. 电网技术, 2018, 42(4): 1140-1148.
Ying, LU Guangming, XIE Chang, et al. Online probabilistic security assessment considering centralized integration of large scale wind power[J]. Power System Technology, 2018, 42(4): 1140-1148.
[23]
陈锐, 刘硕, 贺先强, 等. 计及源网不确定性的风险评估与优化调度[J]. 电力系统及其自动化学报, 2023, 35(5): 19-27, 72.
CHEN Rui, LIU Shuo, HE Xianqiang, et al. Risk assessment and optimal dispatching considering source-network uncertainties[J]. Proceedings of the CSU-EPSA, 2023, 35(5): 19-27, 72.
[24]
黎静华, 左俊军, 汪赛. 大规模风电并网电力系统运行风险评估与分析[J]. 电网技术, 2016, 40(11): 3503-3513.
LI Jinghua, ZUO Junjun, WANG Sai. Analysis and assessment of operation risk for power system with large-scale wind power integration[J]. Power System Technology, 2016, 40(11): 3503-3513.
[25]
许奕斌, 章禹, 何宇斌, 等. 计及灵活性的检修-运行协同优化模型及算法[J]. 电力系统自动化, 2018, 42(11): 32-40.
XU Yibin, ZHANG Yu, HE Yubin, et al. Collaborative optimization model and algorithm of maintenance and operation considering flexibility[J]. Automation of Electric Power Systems, 2018, 42(11): 32-40.
[26]
王长浩, 高红均, 周文毅, 等. 考虑准线需求响应的高比例新能源电力系统调度优化[J]. 电网技术, 2024, 48(11): 4427-4435.
WANG Changhao, GAO Hongjun, ZHOU Wenyi, et al. High proportion new energy power system scheduling optimization considering customer directrix line demand response[J]. Power System Technology, 2024, 48(11): 4427-4435.
[27]
张文秀, 韩肖清, 宋述勇, 等. 计及源-网-荷不确定性因素的马尔科夫链风电并网系统运行可靠性评估[J]. 电网技术, 2018, 42(3): 762-771.
ZHANG Wenxiu, HAN Xiaoqing, SONG Shuyong, et al. Operational reliability evaluation of wind integrated power systems based on Markov chain considering uncertainty factors of source-grid-load[J]. Power System Technology, 2018, 42(3): 762-771.
[28]
KHEMANI B, PATIL S, KOTECHA K, et al. A review of graph neural networks: concepts, architectures, techniques, challenges, datasets, applications, and future directions[J]. Journal of Big Data, 2024, 11(1): 18.
[29]
任欢, 王旭光. 注意力机制综述[J]. 计算机应用, 2021, 41(S1): 1-6.
REN Huan, WANG Xuguang. A summary of attention mechanism[J]. Journal of Computer Applications, 2021, 41(S1): 1-6.
[30]
CLEVERT D A, UNTERTHINER T, HOCHREITER S. Fast and accurate deep network learning by exponential linear units (ELUs)[EB/OL]. [2023-12-25]. https://arxiv.org/abs/1511.07289v5.
[31]
郭创新, 刘祝平, 刘永刚, 等. 基于图神经网络和强化学习的电网风险态势感知[J]. 电网与清洁能源, 2023, 39(12): 41-49.
GUO Chuangxin, LIU Zhuping, LIU Yonggang, et al. GNN and RL based power system risk situation perception[J]. Power System and Clean Energy, 2023, 39(12): 41-49.
[32]
钟智, 管霖, 苏寅生, 等. 基于图注意力深度网络的电力系统暂态稳定评估[J]. 电网技术, 2021, 45(6): 2122-2130.
ZHONG Zhi, GUAN Lin, SU Yinsheng, et al. Power system transient stability assessment based on graph attention deep network[J]. Power System Technology, 2021, 45(6): 2122-2130.
[33]
马光, 张伊宁, 陈哲, 等. 含大规模风电的交直流混联系统风险评估方法[J]. 电网技术, 2019, 43(9): 3241-3252.
MA Guang, ZHANG Yining, CHEN Zhe, et al. Risk assessment method for hybrid AC/DC system with large-scale wind power integration[J]. Power System Technology, 2019, 43(9): 3241-3252.
[34]
商皓钰, 刘天琪, 卜涛, 等. 计及风电与光伏并网的电力系统运行风险评估[J]. 现代电力, 2020, 37(4): 358-367.
SHANG Haoyu, LIU Tianqi, BU Tao, et al. Operational risk assessment of power system considering wind power and photovoltaic grid connection[J]. Modern Electric Power, 2020, 37(4): 358-367.
[35]
蔡新雷, 董锴, 孟子杰, 等. 考虑源荷可调节资源参与的电网风险评估指标体系及方法[J]. 广东电力, 2024, 37(1): 27-38.
CAI Xinlei, DONG Kai, MENG Zijie, et al. Index system and method of power grid risk assessment with participation of adjustable source and load resources[J]. Guangdong Electric Power, 2024, 37(1): 27-38.

Funding

State Grid East lnner Mongolia Electric Power Co.,Ltd.(526604230006)
PDF(1409 KB)

Accesses

Citation

Detail

Sections
Recommended

/