PDF(1409 KB)
Risk Assessment of Renewable Energy Power Systems via Graph Multi-Attention Networks
BAI Yunpeng, ZHANG Zhiyan, XU Cai, GUO Chuangxin, LIU Zhuping, ZHU Wenhao
Electric Power Construction ›› 2025, Vol. 46 ›› Issue (1) : 147-157.
PDF(1409 KB)
PDF(1409 KB)
Risk Assessment of Renewable Energy Power Systems via Graph Multi-Attention Networks
The accelerating global energy transition and rapid expansion of renewable energy sources,presents both opportunities and challenges. This transformation has introduced new concerns related to the “safety and stability” of power grids,particularly as large-scale integration of renewable energy sources such as wind and solar power results in issues including frequency overruns and voltage instability. This study explores the impact of renewable energy output and weather conditions on equipment failures and establishes a comprehensive scenario for power grids under renewable energy integration. A novel multihead graph-attention neural network model is proposed that integrates graph neural networks with multihead attention mechanisms. By incorporating parallel training methods,the proposed model is utilized in renewable energy power systems with the aim of improving risk assessment efficiency while maintaining accuracy in grid risk assessments. The model is trained and tested using data obtained from a provincial power grid within an electrical power simulation system. Results,derived from integrating real-world data from a provincial power grid in China with that of the electrical power simulation system,demonstrate that the attention-based graph neural network method approach substantially improves the robustness and efficiency of risk assessments compared to other artificial intelligence methods. This approach shows considerable promise in renewable energy power systems for enhancing risk assessment.
renewable energy power systems / deep learning / attentional mechanism / risk assessment / risk analysis
| [1] |
张智刚, 康重庆. 碳中和目标下构建新型电力系统的挑战与展望[J]. 中国电机工程学报, 2022, 42(8): 2806-2819.
|
| [2] |
舒印彪, 陈国平, 贺静波, 等. 构建以新能源为主体的新型电力系统框架研究[J]. 中国工程科学, 2021, 23(6): 61-69.
构建以新能源为主体的新型电力系统,既是我国电力系统转型升级的重要方向,也是实现碳达峰、碳中和目标的关键途径。本文分析了电力系统转型带来的变化、问题及挑战,阐述了新型电力系统的内涵、构建原则与思路;根据电力系统发展的技术特征、新能源接入规模,合理划分新型电力系统的发展阶段并针对性提出各阶段的发展建议。研究认为,新型电力系统以新能源为电能供给主体,可满足不断增长的清洁用电需求,兼具高度的安全性、开放性、适应性;相关系统构建是一项系统性工程,应遵循电力系统的技术演进规律与特征,充分利用成熟技术、存量系统并深入挖掘潜力,同步着力研发新兴技术,积极稳妥并循序渐进实施重大转型。
Building a new electric power system that is based on new energy sources is an important direction for power system transformation and upgrading in China, and it is critical for peaking carbon emissions and achieving carbon neutrality. In this study, we analyze the changes and challenges that are brought by power system transformation and elaborate on the connotation and building principles of a new electric power system. Moreover, we categorize the development of the new system into stages and propose development suggestions for each stage considering the technical features of the system and the new energy access scale. The new electric power system proposed in this study can satisfy the increasing demand for clean power as it primarily uses new energy sources and it has the features of high safety, openness, and adaptability. Building the new electric power system should follow the technical evolution law and characteristics of power systems; it should further exploit the potentials of mature technologies and current power systems. Meanwhile, emerging technologies should be researched and developed. |
| [3] |
郭创新, 刘祝平, 冯斌, 等. 新型电力系统风险评估研究现状及展望[J]. 高电压技术, 2022, 48(9): 3394-3404.
|
| [4] |
李建林, 丁子洋, 游洪灏, 等. 构网型储能支撑新型电力系统稳定运行研究[J]. 高压电器, 2023, 59(7): 1-11.
|
| [5] |
胡博, 谢开贵, 邵常政, 等. 双碳目标下新型电力系统风险评述: 特征、指标及评估方法[J]. 电力系统自动化, 2023, 47(5): 1-15.
|
| [6] |
|
| [7] |
冯永青, 张伯明, 吴文传, 等. 基于可信性理论的电力系统运行风险评估 (一)运行风险的提出与发展[J]. 电力系统自动化, 2006, 30(1): 17-23.
|
| [8] |
|
| [9] |
鲍颜红, 张金龙, 徐泰山, 等. 考虑风电出力不确定性的在线暂态稳定风险评估方法[J]. 南方电网技术, 2021, 15(11): 42-48.
|
| [10] |
王彩霞, 鲁宗相, 乔颖, 等. 基于非参数回归模型的短期风电功率预测[J]. 电力系统自动化, 2010, 34(16): 78-82, 91.
|
| [11] |
赵书强, 金天然, 李志伟, 等. 考虑时空相关性的多风电场出力场景生成方法[J]. 电网技术, 2019, 43(11): 3997-4004.
|
| [12] |
马燕峰, 杨小款, 王子建, 等. 基于风险价值的大规模风电并网电力系统运行风险评估[J]. 电网技术, 2021, 45(3): 849-855.
|
| [13] |
陈冰松. 基于支持向量机的电网调度风险评估研究[D]. 杭州: 浙江大学, 2019.
|
| [14] |
王训哲. 基于随机森林算法的电网安全风险评估[D]. 武汉: 武汉大学, 2019.
|
| [15] |
陈泰龙, 马玫, 陈少磊, 等. 基于多尺度优化卷积神经网络的配电网电缆局部放电图像识别[J]. 供用电, 2023, 40(11): 105-111.
|
| [16] |
荆志朋, 柴林杰, 胡诗尧. 基于改进LSTM-VAE的配电网异常负荷检测方法研究[J]. 电测与仪表, 2024, 61(9): 71-76.
|
| [17] |
陈晓华, 吴杰康. 基于北方苍鹰优化算法优化长短期记忆神经网络的光伏发电功率短期预测[J]. 山东电力技术, 2024, 51(10): 10-17.
|
| [18] |
谢宏, 张华赢, 梁晓锐, 等. 基于关系图卷积神经网络的新能源配电台区拓扑识别方法[J]. 电测与仪表, 2024, 61(7): 94-102.
|
| [19] |
郝蛟, 林宏, 李雨森, 等. 基于改进多层感知机的电网运行风险评估方法[J]. 现代电力, 2023, 40(4): 474-483.
|
| [20] |
徐浩, 姜新雄, 刘志成, 等. 基于概率预测的电网静态安全运行风险评估及主动调控策略[J]. 电力系统自动化, 2022, 46(1): 182-191.
|
| [21] |
王铮澄, 周艳真, 郭庆来, 等. 考虑电力系统拓扑变化的消息传递图神经网络暂态稳定评估[J]. 中国电机工程学报, 2021, 41(7): 2341-2350.
|
| [22] |
吕颖, 鲁广明, 谢昶, 等. 考虑大规模集中接入风电功率波动相关性的在线概率安全评估[J]. 电网技术, 2018, 42(4): 1140-1148.
|
| [23] |
陈锐, 刘硕, 贺先强, 等. 计及源网不确定性的风险评估与优化调度[J]. 电力系统及其自动化学报, 2023, 35(5): 19-27, 72.
|
| [24] |
黎静华, 左俊军, 汪赛. 大规模风电并网电力系统运行风险评估与分析[J]. 电网技术, 2016, 40(11): 3503-3513.
|
| [25] |
许奕斌, 章禹, 何宇斌, 等. 计及灵活性的检修-运行协同优化模型及算法[J]. 电力系统自动化, 2018, 42(11): 32-40.
|
| [26] |
王长浩, 高红均, 周文毅, 等. 考虑准线需求响应的高比例新能源电力系统调度优化[J]. 电网技术, 2024, 48(11): 4427-4435.
|
| [27] |
张文秀, 韩肖清, 宋述勇, 等. 计及源-网-荷不确定性因素的马尔科夫链风电并网系统运行可靠性评估[J]. 电网技术, 2018, 42(3): 762-771.
|
| [28] |
|
| [29] |
任欢, 王旭光. 注意力机制综述[J]. 计算机应用, 2021, 41(S1): 1-6.
|
| [30] |
|
| [31] |
郭创新, 刘祝平, 刘永刚, 等. 基于图神经网络和强化学习的电网风险态势感知[J]. 电网与清洁能源, 2023, 39(12): 41-49.
|
| [32] |
钟智, 管霖, 苏寅生, 等. 基于图注意力深度网络的电力系统暂态稳定评估[J]. 电网技术, 2021, 45(6): 2122-2130.
|
| [33] |
马光, 张伊宁, 陈哲, 等. 含大规模风电的交直流混联系统风险评估方法[J]. 电网技术, 2019, 43(9): 3241-3252.
|
| [34] |
商皓钰, 刘天琪, 卜涛, 等. 计及风电与光伏并网的电力系统运行风险评估[J]. 现代电力, 2020, 37(4): 358-367.
|
| [35] |
蔡新雷, 董锴, 孟子杰, 等. 考虑源荷可调节资源参与的电网风险评估指标体系及方法[J]. 广东电力, 2024, 37(1): 27-38.
|
/
| 〈 |
|
〉 |