Climate Risk Adaptation Analysis and Prospect of New Power System

ZHANG Haonan, CUI Limin

Electric Power Construction ›› 2025, Vol. 46 ›› Issue (3) : 16-33.

PDF(3015 KB)
PDF(3015 KB)
Electric Power Construction ›› 2025, Vol. 46 ›› Issue (3) : 16-33. DOI: 10.12204/j.issn.1000-7229.2025.03.002
Key Technology for Flexible Operation of Modern Power System in Cold Regions·Hosted by YI Zhongkai, XU Ying·

Climate Risk Adaptation Analysis and Prospect of New Power System

Author information +
History +

Abstract

In recent years, the world has suffered many major power safety incidents caused by extreme weather events that have severely impacted economic and social development and global energy transition. Considering the development strategy of China’s new power system and the realistic problem of frequent extreme weather events and climate risks, we analyzed the correlation between the new power system and climate, and expound the broad connotation of "adaptability" based on the concepts of "resilience", "flexibility", "reliability", and "stability" to describe the level of power system safety. We thus established a framework for analyzing the climate adaptability of the new power system and explored the key issues and strategies for enhancing the climate adaptability of the new power system. Furthermore, we delved into the research direction of high-quality development of the new power system from the perspective of climate risk adaptability to enrich the theoretical study of the new power system within the framework of a climate-resilient society.

Key words

new power system / extreme weather / climate risk adaptability / power supply security

Cite this article

Download Citations
ZHANG Haonan , CUI Limin. Climate Risk Adaptation Analysis and Prospect of New Power System[J]. Electric Power Construction. 2025, 46(3): 16-33 https://doi.org/10.12204/j.issn.1000-7229.2025.03.002

References

[1]
曾辉, 孙峰, 李铁, 等. 澳大利亚“9·28”大停电事故分析及对中国启示[J]. 电力系统自动化, 2017, 41(13): 1-6.
ZENG Hui, SUN Feng, LI Tie, et al. Analysis of “9·28” blackout in south Australia and its enlightenment to China[J]. Automation of Electric Power Systems, 2017, 41(13): 1-6.
[2]
孙华东, 许涛, 郭强, 等. 英国“8·9”大停电事故分析及对中国电网的启示[J]. 中国电机工程学报, 2019, 39(21): 6183-6192.
SUN Huadong, XU Tao, GUO Qiang, et al. Analysis on blackout in Great Britain power grid on August 9th, 2019 and its enlightenment to power grid in China[J]. Proceedings of the CSEE, 2019, 39(21): 6183-6192.
[3]
安学民, 孙华东, 张晓涵, 等. 美国得州“2.15”停电事件分析及启示[J]. 中国电机工程学报, 2021, 41(10): 3407-3415, 3666.
AN Xuemin, SUN Huadong, ZHANG Xiaohan, et al. Analysis and lessons of Texas power outage event on February 15, 2021[J]. Proceedings of the CSEE, 2021, 41(10): 3407-3415, 3666.
[4]
高红均, 郭明浩, 刘俊勇, 等. 从四川高温干旱限电事件看新型电力系统保供挑战与应对展望[J]. 中国电机工程学报, 2023, 43(12): 4517-4537.
GAO Hongjun, GUO Minghao, LIU Junyong, et al. Power supply challenges and prospects in new power system from Sichuan electricity curtailment events caused by high-temperature drought weather[J]. Proceedings of the CSEE, 2023, 43(12): 4517-4537.
[5]
潘小海, 梁双, 张茗洋. 碳达峰碳中和背景下电力系统安全稳定运行的风险挑战与对策研究[J]. 中国工程咨询, 2021(8): 37-42.
PAN Xiaohai, LIANG Shuang, ZHANG Mingyang. Study on the risk challenges and countermeasures of safe and stable operation of power system under the background of carbon neutralization in peak carbon dioxide emissions[J]. China Engineering Consultants, 2021(8): 37-42.
[6]
梁双, 严超, 厉瑜, 等. 电力系统应对极端天气自然灾害存在的薄弱环节及对策建议[J]. 中国工程咨询, 2022(9): 27-31.
LIANG Shuang, YAN Chao, LI Yu, et al. Weak links and countermeasures of power system in dealing with extreme weather and natural disasters[J]. China Engineering Consultants, 2022(9): 27-31.
[7]
陈立征. 考虑极端气象事件的电力系统风险评估[D]. 济南: 山东大学, 2018.
CHEN Lizheng. Power system risk assessment considering extreme meteorological events[D]. Jinan: Shandong University, 2018.
[8]
卢赓, 邓婧, 王渝红, 等. 电力系统受极端天气的影响分析及其适应策略[J]. 发电技术, 2021, 42(6): 751-764.
Abstract
气候变化对人类社会的影响越来越受关注,随之而来的一系列极端天气引发系统断电的风险也越来越显著。为应对气候变化尤其是极端天气,人类社会需采取减缓和适应2种应对策略,对于发展中国家与小岛国,由于气候变化已经发生,因此气候问题将首先是适应问题。为解决电力系统如何从各个环节完整地适应气候变化问题,建立了一个适应气候变化的电力系统发展体系,提出一种涵盖极端气象因素的电力系统发展路径构建方法。在总结各种极端天气对电力系统影响的基础上,对电网的脆弱性进行评价;研究了适应极端天气的总体策略,并提出电力系统适应极端天气事件的方案,即规划–建设–应急管理–评估(planning-construction-emergency management-assessment,PCEA)抗灾体系。在规划阶段重点进行保底电网规划,构建不停电最小电网主干网;基于方案不同阶段的应用实例,验证了PCEA体系可以促使电力系统更好地适应极端天气。
LU Geng, DENG Jing, WANG Yuhong, et al. Analysis of power system affected by extreme weather and its adaptive strategy[J]. Power Generation Technology, 2021, 42(6): 751-764.

The impact of climate change on human society has attracted more and more attention, and the risk of power outage caused by a series of extreme weather is becoming more and more significant. In order to deal with climate change, especially extreme weather, human society needs to adopt two coping strategies of mitigation and adaptation. For the developing countries and small island countries, since climate change has already taken place, the climate problem will first be adaptation. In order to solve the problem of how the power system can fully adapt to climate change from all aspects, a power system development system adapted to climate change was established, and a construction method of power system development path covering extreme meteorological factors was proposed. On the basis of summarizing the impacts of various extreme weather on the power system, the vulnerability of power grid was evaluated. The overall strategy of adapting to extreme weather was studied, and the scheme of power system adapting to extreme weather events was proposed, namely planning-construction-emergency management-assessment (PCEA) disaster resistance system. In the planning stage, the study focused on the minimum power grid planning and built the minimum power grid backbone network without power outage. Based on the application examples in different stages of the scheme, it was verified that the PCEA system can make the power system better adapt to the extreme weather.

[9]
张浩楠, 袁家海. 新型电力系统应对极端天气冲击的研究[J]. 中国国情国力, 2024(7): 41-44.
ZHANG Haonan, YUAN Jiahai. Research on new power system to deal with extreme weather shock[J]. China National Conditions and Strength, 2024(7): 41-44.
[10]
潘志华, 黄娜, 郑大玮. 气候变化影响链的形成机制及其应对[J]. 中国农业气象, 2021, 42(12): 985-997.
PAN Zhihua, HUANG Na, ZHENG Dawei. Mechanism on the formation of climate change impact chain and its responses[J]. Chinese Journal of Agrometeorology, 2021, 42(12): 985-997.
Once climate change brings various stresses and disturbances on the receptor system, the receptor system will transfer these stresses and disturbances to other systems through its connection with them, resulting in the continuous extension of climate change effects in time and space, forming a complex climate change impact chain. At present, studies on the impacts of climate change mostly focus on the direct impacts, while the indirect impacts are rarely considered. The incomplete understanding of the impact transmission of climate change is one of the main constraints in addressing climate change. It is of great significance to explore the formation mechanism of the impact chain of climate change. This research analyzed the characteristics of climate change impacts, explored the formation mechanism of climate change impact chains, defined the connotation and classification of climate change impact chains, clarified the impact levels of climate change, and proposed ways to cope with climate change impact chains. The results showed that the impacts of climate change were extensive, different, persistent, transferable, transformable, and sometime sudden. When climate change acted on the direct receptors, the impacts of climate change would be transmitted along the food chain in the ecosystem, along the industrial chain in the economic system, and along the social relationship chain in the social system. The transmission of impact chain took the form of material flow, energy flow and information flow. The impacts of climate change always rose from low to high levels, along changes in resource endowments to natural production, economic production systems and social systems. It is believed that the effective control or cutting off of the transmission of adverse impacts of climate change can effectively reduce the impact risks and losses of climate change. The impact chain of climate change and its formation mechanism provide ideas and approaches for people to deal with climate change comprehensively.
[11]
CHOU J M, XU Y, DONG W J, et al. Research on the variation characteristics of climatic elements from April to September in China’s main grain-producing areas[J]. Theoretical and Applied Climatology, 2019, 137(3): 3197-3207.
[12]
田泉, 王斌. 气候变化及极端天气对地区电力设备需求影响研究[J]. 电子测试, 2017(15): 127.
TIAN Quan, WANG Bin. Research on the impacts of climate change and extreme weather on regional power equipment[J]. Electronic Test, 2017(15): 127.
[13]
WEBSTER M, FISHER-VANDEN K, KUMAR V, et al. Integrated hydrological, power system and economic modelling of climate impacts on electricity demand and cost[J]. Nature Energy, 2022, 7: 163-169.
[14]
SUN Y P, ZOU Y, JIANG J N, et al. Climate change risks and financial performance of the electric power sector: evidence from listed companies in China[J]. Climate Risk Management, 2023, 39: 100474.
[15]
WANG W J, PENG W S, TONG L, et al. Study on sustainable development of power transmission system under ice disaster based on a new security early warning model[J]. Journal of Cleaner Production, 2019, 228: 175-184.
[16]
张颖, 黄红伟, 薛艳军. 极端天气下电网故障预警及风险评估模型[J]. 机械与电子, 2022, 40(11): 15-19.
ZHANG Ying, HUANG Hongwei, XUE Yanjun. Grid fault early warning and risk assessment model under extreme weather processes[J]. Machinery & Electronics, 2022, 40(11): 15-19.
[17]
中国电力圆桌项目课题组. 考虑气候风险的电力系统保供能力提升路径与机制研究[R]. 北京: 自然资源保护协会(NRDC)与北京绿源碳和科技有限公司, 2023.
[18]
谢小荣, 马宁嘉, 刘威, 等. 新型电力系统中储能应用功能的综述与展望[J]. 中国电机工程学报, 2023, 43(1): 158-168.
XIE Xiaorong, MA Ningjia, LIU Wei, et al. Functions of energy storage in renewable energy dominated power systems: review and prospect[J]. Proceedings of the CSEE, 2023, 43(1): 158-168.
[19]
元博, 张运洲, 鲁刚, 等. 电力系统中储能发展前景及应用关键问题研究[J]. 中国电力, 2019, 52(3): 1-8.
YUAN Bo, ZHANG Yunzhou, LU Gang, et al. Research on key issues of energy storage development and application in power systems[J]. Electric Power, 2019, 52(3): 1-8.
[20]
刘志清, 王春义, 王飞, 等. 储能在电力系统源网荷三侧应用及相关政策综述[J]. 山东电力技术, 2020, 47(7): 1-8, 21.
LIU Zhiqing, WANG Chunyi, WANG Fei, et al. Source-grid-load application of energy storage in electric power system and related policy overview[J]. Shandong Electric Power, 2020, 47(7): 1-8, 21.
[21]
HOLLING C S. Resilience and stability of ecological systems[J]. Annual Review of Ecology and Systematics, 1973, 4: 1-23.
[22]
KAHNAMOUEI A S, BOLANDI T G, HAGHIFAM M R. The conceptual framework of resilience and its measurement approaches in electrical power systems[C]// IET International Conference on Resilience of Transmission and Distribution Networks (RTDN 2017). Institution of Engineering and Technology, 2017: 1-11.
[23]
刘经纬, 康海鹏, 颜文婷, 等. 极端灾害下的电力系统预防-紧急协调调度[J]. 电力自动化设备, 2023, 43(8): 202-209.
LIU Jingwei, KANG Haipeng, YAN Wenting, et al. Preventive and emergency coordinated dispatching of power system under extreme disaster[J]. Electric Power Automation Equipment, 2023, 43(8): 202-209.
[24]
STANKOVIC A. The definition and quantification of resilience[R]. IEEE PES Industry Technical Support Task Force: Piscataway, 2018.
[25]
ESPINOZA S, PANTELI M, MANCARELLA P, et al. Multi-phase assessment and adaptation of power systems resilience to natural hazards[J]. Electric Power Systems Research, 2016, 136: 352-361.
[26]
鞠平, 王冲, 辛焕海, 等. 电力系统的柔性、弹性与韧性研究[J]. 电力自动化设备, 2019, 39(11): 1-7.
JU Ping, WANG Chong, XIN Huanhai, et al. Flexibility, resilience and toughness of power system[J]. Electric Power Automation Equipment, 2019, 39(11): 1-7.
[27]
阮前途, 谢伟, 许寅, 等. 韧性电网的概念与关键特征[J]. 中国电机工程学报, 2020, 40(21): 6773-6784.
RUAN Qiantu, XIE Wei, XU Yin, et al. Concept and key features of resilient power grids[J]. Proceedings of the CSEE, 2020, 40(21): 6773-6784.
[28]
陈磊, 邓欣怡, 陈红坤, 等. 电力系统韧性评估与提升研究综述[J]. 电力系统保护与控制, 2022, 50(13): 11-22.
CHEN Lei, DENG Xinyi, CHEN Hongkun, et al. Review of the assessment and improvement of power system resilience[J]. Power System Protection and Control, 2022, 50(13): 11-22.
[29]
杜敏, 刘绚, 周元刚. 考虑极端事件下的高比例可再生能源电力系统韧性增强策略[J]. 电力系统自动化, 2023, 47(12): 19-27.
DU Min, LIU Xuan, ZHOU Yuangang, Resilience enhancement strategy for power system with high proportion of renewable energy considering extreme events[J]. Automation of Electric Power Systems, 2023, 47(12): 19-27.
[30]
中国社会科学院语言研究所词典编辑室. 现代汉语词典[M]. 3版(修订本). 北京: 商务印书馆, 1996: 376-377.
[31]
赵玮, 庾鲜海, 阎美玲, 等. DK·牛津英汉双解大词典: 插图版[M]. 北京: 外语教学与研究出版社, 2005: 150-155.
[32]
鲁宗相, 李海波, 乔颖. 含高比例可再生能源电力系统灵活性规划及挑战[J]. 电力系统自动化, 2016, 40(13): 147-158.
LU Zongxiang, LI Haibo, QIAO Ying. Power system flexibility planning and challenges considering high proportion of renewable energy[J]. Automation of Electric Power Systems, 2016, 40(13): 147-158.
[33]
王简, 王承民, 朱彬若. 电力系统中的弹性、灵活性及广义柔性问题研究综述[J]. 智慧电力, 2018, 46(11): 1-6, 13.
WANG Jian, WANG Chengmin, ZHU Binruo. Research summary on resilience, flexibility and general compliance in electric power system[J]. Smart Power, 2018, 46(11): 1-6, 13.
[34]
陆延昌, 孙嘉平. 中国电力百科全书. 综合卷[M]. 3版. 北京: 中国电力出版社, 2014: 98-99.
[35]
李佳. 综合考虑不确定性因素的配电系统可靠性评估[D]. 北京: 华北电力大学, 2008.
LI Jia. Reliability evaluation of distribution system considering uncertainties comprehensively[D]. Beijing: North China Electric Power University, 2008.
[36]
宋晓通. 基于蒙特卡罗方法的电力系统可靠性评估[D]. 济南: 山东大学, 2008.
SONG Xiaotong. Reliability evaluation of power system based on Monte Carlo method[D]. Jinan: Shandong University, 2008.
[37]
陈幸, 陈国华, 吴浩, 等. 基于GT-RBD的电力系统可靠性分析方法[J]. 沈阳工业大学学报, 2023, 45(1): 17-23.
Abstract
针对现有电力系统可靠性评估方法均存在一定的局限性,难以从总体上对系统可靠性进行分析的问题,提出了一种新型电力系统可靠性分析方法.通过引入图论确定线路和节点的状态,并根据节点的可靠性程度对给定的设备组合进行分类.采用可靠性框图评估每一节点的可靠性,并通过在MATLAB中搭建IEEE-9节点系统验证方法的有效性.结果表明,提出的方法可以较好地应用于IEEE-9节点系统中,能够将线路中的节点可靠性进行排序,其准确率可达97.16%,实现了电力系统的安全性和可靠性的有效分析.
CHEN Xing, CHEN Guohua, WU Hao, et al. Reliability analysis method based on GT-RBD for power system[J]. Journal of Shenyang University of Technology, 2023, 45(1): 17-23.
Aiming at the problem that the existing reliability evaluation methods for power system have some limitations resulting in difficulties in comprehensively analysing the system reliability, a new reliability analysis method for power system was proposed. Through the introduction of graph theory, the states of lines and nodes were determined, and the given equipment combination was classified according to the reliability degree of nodes. In addition, the reliability of each node was evaluated by a reliability block diagram, and the validity of as-proposed method was verified by building an IEEE-9 nodes system in MATLAB. The results show that the as-proposed method can be well applied to the IEEE-9 nodes system, and the reliability of nodes in lines can be sequenced, with an accuracy of 97.16%, to realize the effective analysis for the security and reliability of power system.
[38]
KUNDUR P, PASERBA J, AJJARAPU V, et al. Definition and classification of power system stability IEEE/CIGRE joint task force on stability terms and definitions[J]. IEEE Transactions on Power Systems, 2004, 19(3): 1387-1401.
[39]
电力系统安全稳定导则: GB 38755—2019[S]. 北京: 中国标准出版社, 2019.
Code on security and stability for power system: GB 38755—2019[S]. Beijing: Standards Press of China, 2019.
[40]
阮广春, 何一鎏, 谭振飞, 等. 面向新型电力系统运行的数据-物理融合建模综述[J]. 中国电机工程学报, 2024, 44(13): 5021-5037.
RUAN Guangchun, HE Yiliu, TAN Zhenfei, et al. Review of hybrid data-driven and physics-based modeling for the operation of new-type power systems[J]. Proceedings of the CSEE, 2024, 44(13): 5021-5037.
[41]
谢小荣, 贺静波, 毛航银, 等. “双高”电力系统稳定性的新问题及分类探讨[J]. 中国电机工程学报, 2021, 41(2): 461-475.
XIE Xiaorong, HE Jingbo, MAO Hangyin, et al. New issues and classification of power system stability with high shares of renewables and power electronics[J]. Proceedings of the CSEE, 2021, 41(2): 461-475.
[42]
SIMS R. Climate change 2014 - synthesis report[R/OL]. 2014. [2024-08-01]. https://www.doc88.com/p-7304095224239.html.
[43]
SHAPIRO A, PHILPOTT A. A tutorial on stochastic programming[EB/OL]. 2007.[2024-08-01]. https://www.epoc.org.nz/papers/ShapiroTutorialSP.pdf.
[44]
宫成, 宋靓云, 王卫, 等. 鲁棒优化在电力系统机组组合中的应用综述[J]. 科学技术与工程, 2022, 22(12): 4687-4695.
GONG Cheng, SONG Liangyun, WANG Wei, et al. An overview of robust optimization used for power system unit commitment[J]. Science Technology and Engineering, 2022, 22(12): 4687-4695.
[45]
董聪, 李薇, 李延峰, 等. 生物质发电厂规划选址模型的建立及应用[J]. 太阳能学报, 2012, 33(10): 1732-1737.
DONG Cong, LI Wei, LI Yanfeng, et al. Establishment of optimization model for location of biomass power plants and its application[J]. Acta Energiae Solaris Sinica, 2012, 33(10): 1732-1737.
[46]
王一哲, 汤涌, 董朝阳. 电力市场环境下输电网混合性规划模型[J]. 电力系统自动化, 2016, 40(13): 35-40, 127.
WANG Yizhe, TANG Yong, DONG Zhaoyang. Hybrid criterion planning model for transmission system planning under electricity market environment[J]. Automation of Electric Power Systems, 2016, 40(13): 35-40, 127.
[47]
李明明, 孙磊, 马英浩. 大停电事故后计及信息系统故障的机组启动次序优化策略[J]. 中国电力, 2022, 55(9): 146-155.
LI Mingming, SUN Lei, MA Yinghao. An optimization strategy for generator start-up sequence after blackouts considering the cyber system fault[J]. Electric Power, 2022, 55(9): 146-155.
[48]
孙磊, 杨贺钧, 丁明. 配电系统开关优化配置的混合整数线性规划模型[J]. 电力系统自动化, 2018, 42(16): 87-95.
SUN Lei, YANG Hejun, DING Ming. Mixed integer linear programming model of optimal placement for switching devices in distribution system[J]. Automation of Electric Power Systems, 2018, 42(16): 87-95.
[49]
丁涛, 李澄, 胡源, 等. 考虑非预期条件的电力系统多阶段随机规划建模理论与方法[J]. 电网技术, 2017, 41(11): 3566-3573.
DING Tao, LI Cheng, HU Yuan, et al. Multi-stage stochastic programming for power system planning considering nonanticipative constraints[J]. Power System Technology, 2017, 41(11): 3566-3573.
[50]
张衡, 程浩忠, 曾平良, 等. 基于随机优化理论的输电网规划研究综述[J]. 电网技术, 2017, 41(10): 3121-3129.
ZHANG Heng, CHENG Haozhong, ZENG Pingliang, et al. Overview of transmission network expansion planning based on stochastic optimization[J]. Power System Technology, 2017, 41(10): 3121-3129.
[51]
郑智, 周双喜, 徐飞, 等. 基于多场景和模糊技术的综合无功规划[J]. 电力系统自动化, 2007, 31(4): 41-45.
ZHENG Zhi, ZHOU Shuangxi, XU Fei, et al. Comprehensive reactive power planning based on multi-scenasio and fuzzy technique[J]. Automation of Electric Power Systems, 2007, 31(4): 41-45.
[52]
贺帅佳, 阮贺彬, 高红均, 等. 分布鲁棒优化方法在电力系统中的理论分析与应用综述[J]. 电力系统自动化, 2020, 44(14): 179-191.
HE Shuaijia, RUAN Hebin, GAO Hongjun, et al. Overview on theory analysis and application of distributionally robust optimization method in power system[J]. Automation of Electric Power Systems, 2020, 44(14): 179-191.
[53]
周任军, 闵雄帮, 童小娇, 等. 电力环保经济调度矩不确定分布鲁棒优化方法[J]. 中国电机工程学报, 2015, 35(13): 3248-3256.
ZHOU Renjun, MIN Xiongbang, TONG Xiaojiao, et al. Distributional robust optimization under moment uncertainty of environmental and economic dispatch for power system[J]. Proceedings of the CSEE, 2015, 35(13): 3248-3256.
[54]
WIESEMANN W, KUHN D, SIM M. Distributionally robust convex optimization[J]. Operations Research, 2014, 62(6): 1358-1376.
[55]
于腾凯, 董靓媛, 杜晓东, 等. 考虑机会约束的配电网光伏并网容量分布鲁棒优化方法[J]. 电力系统保护与控制, 2021, 49(10): 43-50.
YU Tengkai, DONG Liangyuan, DU Xiaodong, et al. Distributionally robust optimization method of PV grid-connected capacity in a distribution network considering chance constraints[J]. Power System Protection and Control, 2021, 49(10): 43-50.
[56]
童宇轩, 胡俊杰, 刘雪涛, 等. 新能源电力系统灵活性供需量化及分布鲁棒优化调度[J]. 电力系统自动化, 2023, 47(15): 80-90.
TONG Yuxuan, HU Junjie, LIU Xuetao, et al. Quantification of flexibility supply and demand and distributionally robust optimal dispatch of renewable energy dominated power systems[J]. Automation of Electric Power Systems, 2023, 47(15): 80-90.
[57]
税月, 刘俊勇, 高红均, 等. 考虑风电不确定性的电气能源系统两阶段分布鲁棒协同调度[J]. 电力系统自动化, 2018, 42(13): 43-50, 75.
SHUI Yue, LIU Junyong, GAO Hongjun, et al. Two-stage distributed robust cooperative dispatch for integrated electricity and natural gas energy systems considering uncertainty of wind power[J]. Automation of Electric Power Systems, 2018, 42(13): 43-50, 75.
[58]
廖文龙, 任翔, 杨哲, 等. 基于隐式最大似然估计的风电出力场景生成[J]. 电力自动化设备, 2022, 42(11): 56-63.
LIAO Wenlong, REN Xiang, YANG Zhe, et al. Scenario generation of wind power output based on implicit maximum likelihood estimation[J]. Electric Power Automation Equipment, 2022, 42(11): 56-63.
[59]
张帅, 刘文霞, 万海洋, 等. 基于改进条件生成对抗网络的可控场景生成方法[J]. 电力自动化设备, 2024, 44(6): 9-17.
ZHANG Shuai, LIU Wenxia, WAN Haiyang, et al. Controllable scenario generation method based on improved conditional generative adversarial network[J]. Electric Power Automation Equipment, 2024, 44(6): 9-17.
[60]
杜刚. 考虑高比例风电不确定性的电力系统协调调度方法[D]. 北京: 华北电力大学, 2023.
DU Gang. Coordinated dispatching method of power system considering high proportion of wind power uncertainty[D]. Beijing: North China Electric Power University, 2023.
[61]
吕晓茜. 应对新能源预测偏差不确定性的电力系统动态经济调度研究[D]. 北京: 北京交通大学, 2021.
Xiaoqian. Research on dynamic economic dispatch of power system to cope with uncertainty of new energy forecast deviation[D]. Beijing: Beijing Jiaotong University, 2021.
[62]
谭显东, 胡兆光. 基于投入产出法的电力失负荷价值研究拓展[J]. 电网技术, 2008, 32(1): 51-55.
TAN Xiandong, HU Zhaoguang. Further study on value of lost load based on input-output method[J]. Power System Technology, 2008, 32(1): 51-55.
[63]
钱程, 鲍海. 电力市场下边际成本计算方法的解读[J]. 电力系统保护与控制, 2010, 38(17): 7-10, 15.
QIAN Cheng, BAO Hai. Unscrambling of marginal cost algorithm in power market[J]. Power System Protection and Control, 2010, 38(17): 7-10, 15.
[64]
张瑶, 王傲寒, 张宏. 中国智能电网发展综述[J]. 电力系统保护与控制, 2021, 49(5): 180-187.
ZHANG Yao, WANG Aohan, ZHANG Hong. Overview of smart grid development in China[J]. Power System Protection and Control, 2021, 49(5): 180-187.
[65]
杨佳泽, 王灿, 王增平. 新型电力系统背景下的智能负荷预测算法研究综述[J/OL]. 华北电力大学学报(自然科学版), 2023: 1-14. (2023-09-26) [2024-08-15]. https://kns.cnki.net/kcms/detail/13.1212.TM.20230922.1429.002.html.
YANG Jiaze, WANG Can, WANG Zengping. Summary of research on intelligent load forecasting algorithm under the background of new power system[J/OL]. Journal of North China Electric Power University (Natural Science Edition), 2023: 1-14. (2023-09-26) [2024-08-15]. https://kns.cnki.net/kcms/detail/13.1212.TM.20230922.1429.002.html.
[66]
宋家康, 赵建勇, 孙海霞, 等. 基于多目标协同训练的风电功率预测提升算法[J]. 电力工程技术, 2023, 42(6): 232-240.
SONG Jiakang, ZHAO Jianyong, SUN Haixia, et al. Wind power prediction and improvement algorithm based on multi-objective collaborative training[J]. Electric Power Engineering Technology, 2023, 42(6): 232-240.
[67]
王瑞, 冉锋, 逯静. 基于游程判别法和VMD残差修正的风电功率预测[J]. 湖南大学学报(自然科学版), 2022, 49(8): 128-137.
WANG Rui, RAN Feng, LU Jing. Wind power prediction based on Run discriminant method and VMD residual correction[J]. Journal of Hunan University (Natural Sciences), 2022, 49(8): 128-137.
[68]
张伟骏, 李智诚, 陈大玮, 等. 配网侧分布式储能系统的随机优化配置和选址方法[J]. 高压电器, 2023, 59(7): 125-135.
ZHANG Weijun, LI Zhicheng, CHEN Dawei, et al. Stochastic optimal configuration and site selection method of grid-side distributed energy storage system[J]. High Voltage Apparatus, 2023, 59(7): 125-135.
[69]
段宏波, 汪寿阳. 减缓与适应: 中国应对气候变化的成本收益分析[J]. 中国科学院院刊, 2018, 33(3): 284-290.
DUAN Hongbo, WANG Shouyang. Mitigation and adaptation: cost-benefit analysis on copping with climate change in China[J]. Bulletin of Chinese Academy of Sciences, 2018, 33(3): 284-290.
[70]
康重庆, 相年德, 夏清. 综合资源规划及其研究热点问题[J]. 电网技术, 1997, 21(4): 19-24.
KANG Chongqing, XIANG Niande, XIA Qing. An introduction to integrated resource planning and its hot topics[J]. Power System Technology, 1997, 21(4): 19-24.
[71]
董璐, 边晓燕, 周波, 等. 计及调频备用效益的主动配电网分层分布式协调优化调度[J]. 电力自动化设备, 2023, 43(1): 55-63.
DONG Lu, BIAN Xiaoyan, ZHOU Bo, et al. Hierarchical distributed coordinated optimal dispatch of active distribution network considering frequency regulation reserve benefits[J]. Electric Power Automation Equipment, 2023, 43(1): 55-63.
[72]
段新辉, 李军锋, 熊山, 等. 一种新型的电网气象安全预警模型[J]. 陕西电力, 2015, 43(2): 18-22.
DUAN Xinhui, LI Junfeng, XIONG Shan, et al. A new meteorology security warning model for power grid[J]. Shaanxi Electric Power, 2015, 43(2): 18-22.
[73]
麻宁杰, 王华昕, 汤波, 等. 新型电力系统下架空输电线路受极端天气影响的风险评估与运维决策[J/OL]. 电测与仪表, 2024: 1-8. (2024-05-30) [2024-08-15]. https://kns.cnki.net/kcms/detail/23.1202.TH.20240529.1353.002.html.
MA Ningjie, WANG Huaxin, TANG Bo, et al. Risk assessment and operation and maintenance decision of overhead transmission lines affected by extreme weather under new power system[J/OL]. Electrical Measurement & Instrumentation, 2024: 1-8. (2024-05-30) [2024-08-15]. https://kns.cnki.net/kcms/detail/23.1202.TH.20240529.1353.002.html.
[74]
陈旸. 考虑极端天气的温州电网风险评估与管控研究[D]. 杭州: 浙江大学, 2022.
CHEN Yang. Research on risk assessment and management of Wenzhou power grid considering extreme weather[D]. Hangzhou: Zhejiang University, 2022.
[75]
薛禹胜, 吴勇军, 谢云云, 等. 停电防御框架向自然灾害预警的拓展[J]. 电力系统自动化, 2013, 37(16): 18-26.
XUE Yusheng, WU Yongjun, XIE Yunyun, et al. Extension of blackout defense scheme to natural disasters early-warning[J]. Automation of Electric Power Systems, 2013, 37(16): 18-26.
[76]
车兵, 李轩, 郑建勇, 等. 基于LHS与BR的风电出力场景分析研究[J]. 电力工程技术, 2020, 39(6): 213-219.
CHE Bing, LI Xuan, ZHENG Jianyong, et al. Scenario analysis of wind power output based on LHS and BR[J]. Electric Power Engineering Technology, 2020, 39(6): 213-219.
[77]
李小燕. 含光伏发电的农村配电网电能质量概率评估方法[D]. 兰州: 兰州理工大学, 2020.
LI Xiaoyan. Probabilistic evaluation method for power quality of rural distribution network with photovoltaic power generation[D]. Lanzhou: Lanzhou University of Technology, 2020.
[78]
周启航, 管霖, 冼玮宏, 等. 考虑调度措施的地区电网多风险场景柔性水平评价模型[J]. 电力工程技术, 2024, 43(6): 43-52.
ZHOU Qihang, GUAN Lin, XIAN Weihong, et al. Multi-risk-scenarios flexibility evaluation model of regional power grid considering economic efficiency of dispatching measures[J]. Electric Power Engineering Technology, 2024, 43(6): 43-52.
[79]
张宇威, 肖金星, 杨军, 等. 基于风光数据驱动不确定集合的配电网与多微网鲁棒经济调度[J]. 电力建设, 2021, 42(10): 40-50.
Abstract
随着风电和光伏等可再生能源通过多微网(multiple microgrids,MMGs)的形式接入配电网(distribution network,DN),其不确定性会给配电网与多微网系统联合运行的可靠性、经济性带来挑战。对此,文章提出了一种考虑风光相关性的配电网与多微网数据驱动鲁棒调度方法。首先采用分布式调度方法建立配电网与多微网调度框架,分别建立配电网调度模型与微网二阶段鲁棒调度模型,以联络线功率作为两者的耦合参数;考虑风光出力的不确定性与时空相关性,采用数据驱动算法构建风-光出力不确定集合,从而建立微网数据驱动鲁棒调度模型;最后提出一种基于极限场景的改进列约束生成算法(column-and-constraint generation,C&CG)求解微网鲁棒调度问题,并采用目标级联分析法(analytical target cascading,ATC)对配电网与多微网整体调度问题进行求解。仿真结果表明,该配电网与多微网的数据驱动鲁棒调度策略可以捕捉风-光时空相关性,在保证系统调度鲁棒性时提高调度的经济性,并具有良好的收敛性。
ZHANG Yuwei, XIAO Jinxing, YANG Jun, et al. Data-driven robust economic dispatch for distribution network and multiple micro-grids considering correlativity of wind and solar output[J]. Electric Power Construction, 2021, 42(10): 40-50.

As renewable energy generations represented by wind and photovoltaic power connect to the distribution network (DN) through multiple micro-grids (MMGs), the uncertainty will bring challenges to the reliability and economy of the operation of the DN and MMGs. In response to this, this paper proposes a data-driven robust dispatch method for DN and MMGs considering correlation between wind and solar output. Firstly, a distributed dispatch method is adopted to establish the dispatch model of the DN and a two-stage dispatch model of the MMGs, with the tie-line power as the coupling parameter of the two. Aiming at the uncertainty of renewable energy output as well as the temporal and spatial correlations, the wind-solar output ellipsoid uncertain set is constructed based on the data-driven algorithm, thereby establishing the two-stage data-driven robust dispatch model of the micro-grid. Finally, an improved column and constraint generation algorithm based on extreme scenarios is proposed to solve the robust dispatch problem of the micro-grid, and the analytical target cascading method is used to solve the overall dispatch problem of DN and MMGs. The simulation results show that the proposed method can capture the spatial-temporal correlation between wind and solar, improve the economy of dispatch while ensuring the robustness of the DN and MMGs dispatch, and has good convergence.

[80]
姜梦妍, 王筱, 董闯, 等. 基于时序运行模拟的水火风光储互补系统电源优化配置[J]. 水力发电学报, 2024, 43(3): 71-83.
JIANG Mengyan, WANG Xiao, DONG Chuang, et al. Optimal capacity configuration for hydroelectric-thermal-windphotovoltaic-storage multi-energy complementary system based on sequential power generation simulations[J]. Journal of Hydroelectric Engineering, 2024, 43(3): 71-83.
[81]
朱琼锋, 李家腾, 乔骥, 等. 人工智能技术在新能源功率预测的应用及展望[J]. 中国电机工程学报, 2023, 43(8): 3027-3048.
ZHU Qiongfeng, LI Jiateng, QIAO Ji, et al. Application and prospect of artificial intelligence technology in renewable energy forecasting[J]. Proceedings of the CSEE, 2023, 43(8): 3027-3048.
[82]
汪鸿, 朱正甲, 陈建华, 等. 基于人工智能技术与物理方法结合的新能源功率预测研究[J]. 高电压技术, 2023, 49(S1): 111-117.
WANG Hong, ZHU Zhengjia, CHEN Jianhua, et al. Research on new energy power prediction based on artificial intelligence technology and physical method[J]. High Voltage Engineering, 2023, 49(S1): 111-117.
[83]
张艳锋, 郭建华, 宋举, 等. 基于案例推理的极端天气下风功率预测系统研究[J]. 电工技术, 2023(18): 64-67.
ZHANG Yanfeng, GUO Jianhua, SONG Ju, et al. Case-based reasoning method for predicting wind power under extreme weather[J]. Electric Engineering, 2023(18): 64-67.
[84]
CHEN X L, TANG J J, LI W Y. Probabilistic operational reliability of composite power systems considering multiple meteorological factors[J]. IEEE Transactions on Power Systems, 2020, 35(1): 85-97.
[85]
HAAS J, CEBULLA F, NOWAK W, et al. A multi-service approach for planning the optimal mix of energy storage technologies in a fully-renewable power supply[J]. Energy Conversion and Management, 2018, 178: 355-368.
[86]
梁海平, 李子恩, 杨海跃, 等. 面向源荷储效益最大化的多场景储能优化配置[J/OL]. 华北电力大学学报(自然科学版), 2024: 1-11. (2024-08-08) [2024-08-15]. https://kns.cnki.net/kcms/detail/13.1212.TM.20240807.1223.004.html.
LIANG Haiping, LI Zien, YANG Haiyue, et al. Optimal allocation of multi-scenario energy storage for maximizing the benefit of source, load and storage[J/OL]. Journal of North China Electric Power University (Natural Science Edition), 2024: 1-11. (2024-08-08) [2024-08-15]. https://kns.cnki.net/kcms/detail/13.1212.TM.20240807.1223.004.html.
[87]
张浩鹏, 李泽宁, 薛屹洵, 等. 基于共享储能服务的智能楼宇双层优化配置[J/OL]. 中国电机工程学报, 2024: 1-12. (2024-04-03) [2024-08-15]. https://kns.cnki.net/kcms/detail/11.2107.TM.20240402.1440.024.html.
ZHANG Haopeng, LI Zening, XUE Yixun, et al. Double-layer optimal configuration of intelligent building based on shared energy storage service[J/OL]. Proceedings of the CSEE, 2024: 1-12. (2024-04-03) [2024-08-15]. https://kns.cnki.net/kcms/detail/11.2107.TM.20240402.1440.024.html.
[88]
马晓伟, 王文倬, 薛晨, 等. 西北新型电力系统先行示范体系探究[J]. 电网与清洁能源, 2024, 40(1): 1-7.
MA Xiaowei, WANG Wenzhuo, XUE Chen, et al. Research on the leading demonstration system of new-type power system in northwest China[J]. Power System and Clean Energy, 2024, 40(1): 1-7.
[89]
孟秋, 廖凯, 郑舜玮, 等. 考虑灵活性区域互济的电力系统源-网-储协同规划[J]. 电网技术, 2024, 48(8): 3165-3174.
MENG Qiu, LIAO Kai, ZHENG Shunwei, et al. Source-grid-storage coordinated planning for power system considering flexibility mutual aid among regions[J]. Power System Technology, 2024, 48(8): 3165-3174.
[90]
张文华, 闫庆友, 何钢, 等. 气候变化约束下中国电力系统低碳转型路径及策略[J]. 气候变化研究进展, 2021, 17(1): 18-26.
ZHANG Wenhua, YAN Qingyou, HE Gang, et al. The pathway and strategy of China’s power system low-carbon transition under the constraints of climate change[J]. Climate Change Research, 2021, 17(1): 18-26.
[91]
朱永清, 林佳宁, 李庆生, 等. 冰灾下考虑多重不确定性的负荷聚合商市场力评估方法[J]. 浙江电力, 2024, 43(1): 64-71.
ZHU Yongqing, LIN Jianing, LI Qingsheng, et al. A market power assessment method for load aggregators considering multiple uncer-tainties under ice disasters[J]. Zhejiang Electric Power, 2024, 43(1): 64-71.
[92]
康乾坤. 基于5G通信的配电网经济性评价、应急通信与供电恢复研究[D]. 西安: 西安理工大学, 2024.
KANG Qiankun. Research on economic evaluation, emergency communication and power supply recovery of distribution network based on 5G communication[D]. Xi’an: Xi’an University of Technology, 2024.
[93]
李洋, 尹逊虎, 张思, 等. 考虑多元发电资源灵活性的电力系统紧急调峰调度方法[J]. 浙江电力, 2023, 42(8): 37-45.
LI Yang, YIN Xunhu, ZHANG Si, et al. Emergency peak shaving dispatching method for power system considering flexibility of multiple power generation resources[J]. Zhejiang Electric Power, 2023, 42(8): 37-45.
[94]
李先锋, 胡晨刚, 卜莉敏, 等. 考虑应急电源功能的住宅小区微电网运行策略[J]. 浙江电力, 2024, 43(3): 104-113.
LI Xianfeng, HU Chengang, BU Limin, et al. An operational strategy for residential microgrids considering emergency power source functionality[J]. Zhejiang Electric Power, 2024, 43(3): 104-113.
[95]
杨祺铭, 李更丰, 别朝红, 等. 计及间歇性新能源的弹性城市电网输配电协同供电恢复方法[J]. 高电压技术, 2023, 49(7): 2764-2774.
YANG Qiming, LI Gengfeng, BIE Zhaohong, et al. Coordinated power supply restoration method of resilient urban transmission and distribution networks considering intermittent new energy[J]. High Voltage Engineering, 2023, 49(7): 2764-2774.
[96]
范馨予, 黄媛, 吴疆, 等. 考虑源网荷储协同优化的配电网韧性提升策略[J]. 电力建设, 2023, 44(4): 63-73.
Abstract
随着分布式电源的规模化接入,针对极端灾害引起的大规模停电事故难以采用传统的配电网故障恢复策略。首先,提出了极端灾害下考虑源网荷储协调优化提升配电网韧性的策略框架。其次,针对分布式能源出力的不可控性和时变性,建立了光储和风储系统模型(optical storage and wind storage system,OWS)。同时,考虑到负荷的价格需求弹性,建立了极端灾害下的负荷需求响应(load demand response,LDR)模型。再次,以负荷恢复的总价值最大为目标,考虑LDR补偿、故障抢修与网络重构过程中的网损成本,建立了考虑源网荷储协同优化的配电网韧性提升模型。最后,在改进的PG&E 69节点配电网系统算例中验证了所提策略的有效性,结果表明利用多能互补的特性进行源网荷储的协同优化有利于提高配电网的故障恢复能力。
FAN Xinyu, HUANG Yuan, WU Jiang, et al. Resilience promotion strategy for distribution network considering source-network-load-storage coordination[J]. Electric Power Construction, 2023, 44(4): 63-73.

With the large-scale access of distributed power generation, the traditional fault-recovery strategy for distribution network is difficult to be applied to large-scale blackouts caused by extreme disasters. Firstly, this paper proposes a strategic framework to optimize and improve the resilience of distribution network considering the coordination of source, network, load and storage under extreme disasters. Secondly, aiming at the uncontrollability and time variability of distributed energy output, the PV-storage and wind-storage (PWS) system models are established. At the same time, considering the relationship between electricity price demand response (DR) and load demand, a load demand response (LDR) model under extreme disasters is established. Thirdly, aiming at maximizing the total value of load recovery, considering the cost of network loss in the process of LDR compensation, fault repair and network reconstruction, a resilience promotion model for distribution network considering the source-network-load-storage collaborative optimization is established. Finally, the effectiveness of the proposed method is verified in an improved PG &E 69-node distribution network system. The results show that the source-network-load-storage cooperative optimization according to the characteristics of multi-energy complementation is beneficial to improve the fault recovery ability of the distribution network.

[97]
孙峤, 黄家凯, 郭凌旭, 等. 强风雨天气等极端灾害下的配电网弹性提升优化策略[J]. 电网与清洁能源, 2024, 40(11): 86-96.
SUN Qiao, HUANG Jiakai, GUO Lingxu, et al. Optimization strategy of distribution network resilience enhancement under extreme disasters as heavy wind and rain weather[J]. Power System and Clean Energy, 2024, 40(11): 86-96.
[98]
刘舒, 时珊珊, 周政, 等. 考虑电动汽车的城市配电网网络重构策略[J/OL]. 电测与仪表, 2023: 1-8. (2023-02-17) [2024-08-15]. https://kns.cnki.net/kcms/detail/23.1202.TH.20230216.1106.004.html.
LIU Shu, SHI Shanshan, ZHOU Zheng, et al. Network reconfiguration strategy of urban distribution network considering electric vehicles[J/OL]. Electrical Measurement & Instrumentation, 2023: 1-8. (2023-02-17) [2024-08-15]. https://kns.cnki.net/kcms/detail/23.1202.TH.20230216.1106.004.html.
[99]
杨祺铭, 李更丰, 别朝红, 等. 台风灾害下基于V2G的城市配电网弹性提升策略[J]. 电力系统自动化, 2022, 46(12): 130-139.
YANG Qiming, LI Gengfeng, BIE Zhaohong, et al. Vehicle-to-grid based resilience promotion strategy for urban distribution network under typhoon disaster[J]. Automation of Electric Power Systems, 2022, 46(12): 130-139.
[100]
谢宇峥, 章德, 杨祺铭, 等. 台风灾害下考虑修复不确定性和V2G的弹性城市电网动态供电恢复方法[J]. 电网与清洁能源, 2024, 40(6): 107-114.
XIE Yuzheng, ZHANG De, YANG Qiming, et al. A dynamic power supply restoration method for resilient urban power grids considering repair uncertainty and V2G under typhoon disaster[J]. Advances of Power System & Hydroelectric Engineering, 2024, 40(6): 107-114.
[101]
刘达夫, 钟剑, 杨祺铭, 等. 基于V2G与应急通信的配电网信息物理协同快速恢复方法[J]. 电力系统自动化, 2024, 48(7): 147-158.
LIU Dafu, ZHONG Jian, YANG Qiming, et al. Fast recovery method for distribution network through cyber-physical collaboration based on vehicle to grid and emergency communication[J]. Automation of Electric Power Systems, 2024, 48(7): 147-158.
[102]
杨丽君, 安立明, 杨博, 等. 基于可达性分析的主动配电网多故障分区修复策略[J]. 电工技术学报, 2018, 33(20): 4864-4875.
YANG Lijun, AN Liming, YANG Bo, et al. Multi-fault partition repair strategy of active distribution network based on reachability analysis[J]. Transactions of China Electrotechnical Society, 2018, 33(20): 4864-4875.
[103]
李继红, 张笑弟, 周泰斌, 等. 弹性配电网恢复力快速评估的解析方法研究[J]. 电网与清洁能源, 2024, 40(10): 50-58.
LI Jihong, ZHANG Xiaodi, ZHOU Taibin, et al. A study on the fast assessment of the resilience of elastic distribution systems with an analytical method[J]. Power System and Clean Energy, 2024, 40(10): 50-58.

Funding

National Natural Science Foundation of China(72303064)
Fundamental Research Funds for the Central Universities(2023MS152)
PDF(3015 KB)

Accesses

Citation

Detail

Sections
Recommended

/