Transmission-Storage Collaborative Planning Method for the Bases in the Gobi and Desertification Land Accounting for UHVDC Transmission Characteristics

SUN Yiding, WANG Qianchen, XIE Chenzheng, GUO Guodong, LIU Dong, SUN Yingyun

Electric Power Construction ›› 2025, Vol. 46 ›› Issue (3) : 72-84.

PDF(3084 KB)
PDF(3084 KB)
Electric Power Construction ›› 2025, Vol. 46 ›› Issue (3) : 72-84. DOI: 10.12204/j.issn.1000-7229.2025.03.006
Key Technologies for Power Generation and Consumption of Large-scale Renewable Energy Bases in Desert, Gobi, and Barren Land Areas·Hosted by LIU Nian, WANG Cheng, CHEN Shi, ZANG Tianlei, LI Hui·

Transmission-Storage Collaborative Planning Method for the Bases in the Gobi and Desertification Land Accounting for UHVDC Transmission Characteristics

Author information +
History +

Abstract

Under the "Dual Carbon" goals, China is accelerating the construction of large-scale wind and solar power generation bases in the Gobi and desertification land. The inherent randomness and volatility of wind and solar power outputs introduce significant uncertainties and the risk of load shedding for the operation of the bases in the Gobi and desertification land and their external transmission systems. Traditional ultra-high voltage direct current (UHVDC) power curve formulation and transmission-storage collaborative planning methods are inadequate for the power delivery from the bases in the Gobi and desertification land. Therefore, this paper proposes a typical UHVDC transmission power curve set construction method firstly, addressing the uncertainty of wind and solar power output. Furthermore, this paper introduces a system load shedding risk quantification index that based on conditional value-at-risk (CVaR) theory and develops a transmission-storage collaborative planning model tailored to the bases in the Gobi and desertification regions. Finally, a case study is conducted on the wind-solar-thermal-storage integrated power generation base in the Gobi and desertification land. The results demonstrate that the proposed method effectively accommodates diverse wind-solar output scenarios and maximizes the renewable energy utilization, thereby validates the feasibility and effectiveness the proposed approach.

Key words

bases in the Gobi and desertification land / UHVDC / transmission power curve / theory of CVaR / transmission-storage collaborative planning

Cite this article

Download Citations
SUN Yiding , WANG Qianchen , XIE Chenzheng , et al . Transmission-Storage Collaborative Planning Method for the Bases in the Gobi and Desertification Land Accounting for UHVDC Transmission Characteristics[J]. Electric Power Construction. 2025, 46(3): 72-84 https://doi.org/10.12204/j.issn.1000-7229.2025.03.006

References

[1]
国家发展改革委,国家能源局. 关于完善能源绿色低碳转型体制机制和政策措施的意见[EB/OL]. [2024-06-12]. https://www.gov.cn/zhengce/zhengceku/2022-02/11/content_5673015.htm.
[2]
国家发展改革委, 国家能源局, 财政部, 等. “十四五”可再生能源发展规划[EB/OL]. (2021-10-21)[2024-06-12]. https://www.ndrc.gov.cn/xxgk/zcfb/ghwb/202206/t20220601_1326719.html?state=123.
[3]
《新型电力系统发展蓝皮书》编写组. 新型电力系统发展蓝皮书[M]. 北京: 中国电力出版社, 2023: 55.
[4]
中共中央国务院关于完整准确全面贯彻新发展理念做好碳达峰碳中和工作的意见[EB/OL].[2024-06-12]. http://www.gov.cn/zhengce/2021-10/24/content_5644613.htm.
[5]
王旭辉, 张晋芳. 构建多元供应体系夯实电力保障基础[N]. 中国能源报,2020-10-26(004).
WANG Xuhui, ZHANG Jinfang. Building a diversified supply system to strengthen the foundation of power security[N]. China Energy News, 2020-10-26(004).
[6]
李佳蔚, 张冠宇. 大规模分布式新能源接入对省级电网稳定性影响[J]. 中国电力, 2024, 57(6): 174-180.
LI Jiawei, ZHANG Guanyu. Impact of large scale distributed new energy access on provincial power grid stability[J]. Electric Power, 2024, 57(6): 174-180.
[7]
程林, 王吉利, 韩志勇, 等. 新能源接入对区域系统频率稳定的影响及机组改进控制策略[J]. 电力科学与技术学报, 2024, 39(2): 28-34.
CHENG Lin, WANG Jili, HAN Zhiyong, et al. Impact of new energy access on regional system frequency stability and unit improvement control strategy[J]. Journal of Electric Power Science and Technology, 2024, 39(2): 28-34.
[8]
刘振, 吴秀山, 周昭民, 等. 考虑出力平滑的风光储协同规划方法[J]. 智慧电力, 2024, 52(9): 25-32, 79.
LIU Zhen, WU Xiushan, ZHOU Zhaomin, et al. Cooperative planning method for solar-wind-storage considering output smoothing[J]. Smart Power, 2024, 52(9): 25-32, 79.
[9]
周文俊, 曹毅, 李杰, 等. 考虑风电场调控裕度的风火打捆直流外送系统无功电压紧急控制策略[J]. 中国电力, 2023, 56(4): 77-87.
ZHOU Wenjun, CAO Yi, LI Jie, et al. Reactive voltage emergency control strategy of wind-thermal-bundled DC transmission system considering wind farm regulation margin[J]. Electric Power, 2023, 56(4): 77-87.
[10]
潘超, 王锦鹏, 包钰婷, 等. 考虑源荷侧灵活性资源的风光消纳互动调控[J]. 智慧电力, 2023, 51(1): 1-8.
PAN Chao, WANG Jinpeng, BAO Yuting, et al. Interactive control of wind and photovoltaic power consumption considering source-load side flexible resources[J]. Smart Power, 2023, 51(1): 1-8.
[11]
刘振亚, 张启平, 董存, 等. 通过特高压直流实现大型能源基地风、光、火电力大规模高效率安全外送研究[J]. 中国电机工程学报, 2014, 34(16): 2513-2522.
LIU Zhenya, ZHANG Qiping, DONG Cun, et al. Efficient and security transmission of wind, photovoltaic and thermal power of large-scale energy resource bases through UHVDC projects[J]. Proceedings of the CSEE, 2014, 34(16): 2513-2522.
[12]
于琳琳, 严格, 晏昕童, 等. 考虑电网支撑能力约束的直流落点及定容优化规划[J]. 中国电力, 2023, 56(8): 175-185.
YU Linlin, YAN Ge, YAN Xintong, et al. Optimal planning of terminal locations and capacity of UHVDC considering constraints of receiving-end power grid support capability[J]. Electric Power, 2023, 56(8): 175-185.
[13]
和萍, 刘鑫, 宫智杰, 等. 高比例可再生能源电力系统源荷储联合调峰分层优化运行[J]. 电力系统保护与控制, 2024, 52(18): 112-122.
HE Ping, LIU Xin, GONG Zhijie, et al. Hierarchical optimization operation model for joint peak-load regulation of source-load-storage in a high proportion of renewable energy power system[J]. Power System Protection and Control, 2024, 52(18): 112-122.
[14]
沙伟燕, 胡伟, 何宁辉, 等. 大规模虚拟储能平抑新能源功率预测误差优化调度方法[J]. 电力科学与技术学报, 2023, 38(6): 167-174.
SHA Weiyan, HU Wei, HE Ninghui, et al. Optimal scheduling method for stabilizing power prediction error of new energy by large-scale virtual energy storage[J]. Journal of Electric Power Science and Technology, 2023, 38(6): 167-174.
[15]
黄英, 刘宝柱, 王坤宇, 等. 考虑风电接纳能力的储输联合规划[J]. 电网技术, 2018, 42(5): 1480-1489.
HUANG Ying, LIU Baozhu, WANG Kunyu, et al. Joint planning of energy storage and transmission network considering wind power accommodation capability[J]. Power System Technology, 2018, 42(5): 1480-1489.
[16]
姜海洋, 杜尔顺, 金晨, 等. 高比例清洁能源并网的跨国互联电力系统多时间尺度储能容量优化规划[J]. 中国电机工程学报, 2021, 41(6): 2101-2114.
JIANG Haiyang, DU Ershun, JIN Chen, et al. Optimal planning of multi-time scale energy storage capacity of cross-national interconnected power system with high proportion of clean energy[J]. Proceedings of the CSEE, 2021, 41(6): 2101-2114.
[17]
郑扬威, 江岳文, 张金辉. 高比例风电渗透下考虑长短期储能的源-储-输联合规划优化[J]. 电力自动化设备, 2023, 43(3): 63-71.
ZHENG Yangwei, JIANG Yuewen, ZHANG Jinhui. Joint planning optimization of source-storage-transportation considering long- and short-term energy storage under high proportion of wind power penetration[J]. Electric Power Automation Equipment, 2023, 43(3): 63-71.
[18]
王智冬. 特高压直流风电火电联合外送电源规模优化方法[J]. 电力建设, 2015, 36(10): 60-66.
Abstract
特高压直流(UHVDC)风火联合外送可实现西部、北部风电跨区远距离输送,扩大风电消纳范围。提出了优化特高压直流风火打捆外送配套电源规模的研究方法,首先研究了UHVDC输送火电、风电的技术性约束,包括UHVDC输电运行方式,以及对风电、火电配套规模的影响,提出了配套电源的研究原则及思路;其次,建立了特高压直流风电、火电联合外送配套电源规模的优化方法;最后,以酒泉—湖南±800  kV特高压直流输电工程为例,给出了酒泉—湖南特高压直流风电、火电配套规模,验证了方法的科学性。提出的研究方法对扩大我国北部风电消纳范围,提高特高压直流通道输送效率具有重要意义。
WANG Zhidong. Optimization method of UHVDC combined wind-thermal power transmission scale[J]. Electric Power Construction, 2015, 36(10): 60-66.
<p>UHVDC combined wind-thermal power transmission can resolve the long-distance transmission of wind power from western and north, and expand the accommodation range of wind power. This paper presented research method for the auxiliary power supply scale optimization of UHVDC wind-thermal power bundled transmission. First of all, this paper studied the technical constraints of wind-thermal power transmission through UHVDC, including the operation mode of UHVDC transmission and its influence on the scale of wind-thermal power, as well as proposed the research principles and ideas of auxiliary power supply. Secondly, the optimization method for auxiliary power supply scale of UHVDC combined wind-thermal power transmission was studied. Finally, taking the Jiuquan-Hunan &plusmn;800&nbsp; kV UHVDC project as an example, this paper presented the wind-thermal power scale in Jiuquan-Hunan UHVDC, and verified the scientificity of the proposed method. The proposed method has great significance for expanding the accommodation range of wind power in the north of our country and improving the transmission efficiency of UHVDC transmission.</p>
[19]
刘泽洪, 周原冰, 金晨. 支撑新能源基地电力外送的电源组合优化配置策略研究[J]. 全球能源互联网, 2023, 6(2): 101-112.
LIU Zehong, ZHOU Yuanbing, JIN Chen. Optimization strategy study on installation mix of renewable energy power base for supporting outbound delivery[J]. Journal of Global Energy Interconnection, 2023, 6(2): 101-112.
[20]
刘斌, 张玉琼, 麻林巍, 等. 西北地区源端基地综合能源系统的技术方案设计及优化研究[J]. 中国电机工程学报, 2021, 41(2): 568-580.
LIU Bin, ZHANG Yuqiong, MA Linwei, et al. Design and optimization of technical schemes of supply-side base integrated energy systems in Northwest China[J]. Proceedings of the CSEE, 2021, 41(2): 568-580.
[21]
吴雄, 贺明康, 何雯雯, 等. 考虑储能寿命的风-光-火-储打捆外送系统容量优化配置[J]. 电力系统保护与控制, 2023, 51(15): 66-75.
WU Xiong, HE Mingkang, HE Wenwen, et al. Optimal capacity of a wind-solar-thermo-storage-bundled power transmission system considering battery life[J]. Power System Protection and Control, 2023, 51(15): 66-75.
[22]
章建华. 全面构建现代能源体系推动新时代能源高质量发展[R]. 北京: 国家能源局, 2022.
ZHANG Jianhua. Comprehensively building a modern energy system to promote high-quality development of energy in the new era[R]. Beijing: National Energy Administration, 2022.
[23]
辛颂旭, 张运洲, 白建华. 远距离大容量直流输送风电功率调节方式研究[J]. 中国电力, 2013, 46(6): 70-74.
XIN Songxu, ZHANG Yunzhou, BAI Jianhua. Study on power regulation scheme of large-capacity and long-DistanceDC transmission for wind power[J]. Electric Power, 2013, 46(6): 70-74.
[24]
钟海旺, 夏清, 丁茂生, 等. 以直流联络线运行方式优化提升新能源消纳能力的新模式[J]. 电力系统自动化, 2015, 39(3): 36-42.
ZHONG Haiwang, XIA Qing, DING Maosheng, et al. A new mode of HVDC tie-line operation optimization for maximizing renewable energy accommodation[J]. Automation of Electric Power Systems, 2015, 39(3): 36-42.
[25]
FU Y, SHAHIDEHPOUR M, LI Z Y. Security-constrained unit commitment with AC constraints[J]. IEEE Transactions on Power Systems, 2005, 20(2): 1001-1013.
[26]
国家电网公司国家电力调度控制中心组. 智能电网调度控制系统应用技术[M]. 北京: 中国电力出版社, 2016: 365.
State Grid Corporation of China National Power Dispatch Control Centre Group. Smart grid dispatch control system Application technology[M]. Beijing: China Electric Power Press, 2016: 365.
[27]
周明, 翟俊义, 任建文, 等. 含风电并网的直流互联电网分散协调调度方法[J]. 电网技术, 2017, 41(5): 1428-1434.
ZHOU Ming, ZHAI Junyi, REN Jianwen, et al. A decentralized coordinated dispatch approach for interconnected power grid with wind power via HVDC Tie-line[J]. Power System Technology, 2017, 41(5): 1428-1434.
[28]
ZHOU M, ZHAI J Y, LI G Y, et al. Distributed dispatch approach for bulk AC/DC hybrid systems with high wind power penetration[J]. IEEE Transactions on Power Systems, 2018, 33(3): 3325-3336.
[29]
郭怿, 明波, 黄强, 等. 考虑输电功率平稳性的水-风-光-储多能互补日前鲁棒优化调度[J]. 电工技术学报, 2023, 38(9): 2350-2363.
GUO Yi, MING Bo, HUANG Qiang, et al. Day-ahead robust optimal scheduling of hydro-wind-PV-storage complementary system considering the steadiness of power delivery[J]. Transactions of China Electrotechnical Society, 2023, 38(9): 2350-2363.
[30]
许丹, 王斌, 张加力, 等. 特高压直流外送风光火电力一体化调度计划模型[J]. 电力系统自动化, 2016, 40(6): 25-29, 57.
XU Dan, WANG Bin, ZHANG Jiali, et al. Integrated transmission scheduling model for wind-photovoltaic-thermal power by ultra-high voltage direct current system[J]. Automation of Electric Power Systems, 2016, 40(6): 25-29, 57.
[31]
李湃, 王伟胜, 黄越辉, 等. 大规模新能源基地经特高压直流送出系统中长期运行方式优化方法[J]. 电网技术, 2023, 47(1): 31-40.
LI Pai, WANG Weisheng, HUANG Yuehui, et al. Method on optimization of medium and long term operation modes of large-scale renewable energy power base through UHVDC system[J]. Power System Technology, 2023, 47(1): 31-40.
[32]
李晖, 刘栋, 秦继朔, 等. 考虑风光出力不确定性的新能源基地直流外送随机规划方法研究[J]. 电网技术, 2024, 48(7): 2795-2803.
LI Hui, LIU Dong, QIN Jishuo, et al. Stochastic planning method for UHVDC transmission of renewable energy power base considering wind and photovoltaic output uncertainties[J]. Power System Technology, 2024, 48(7): 2795-2803.
[33]
何鑫, 刘翠, 李芸. 不同运行方式的大规模新能源接入电网后的调频特性研究[J]. 电力科学与技术学报, 2024, 39 (3): 168-176, 186.
HE Xin, LIU Cui, LI Yun. Study on frequency regulation characteristics of power grids after large-scale new energy integration under different operation modes[J]. Journal of Electric Power Science and Technology, 2024, 39 (3): 168-176, 186.
[34]
DONG X C, SUN Y Y, MALIK S M, et al. Scenario reduction network based on Wasserstein distance with regularization[J]. IEEE Transactions on Power Systems, 2024, 39(1): 4-13.
[35]
江雪辰, 朱俊澎, 袁越, 等. 基于新型场景划分与考虑时序相关性的光伏出力时间序列模拟方法[J]. 电力建设, 2018, 39(10): 63-70.
Abstract
针对现有光伏出力的马尔科夫链模型在原始数据分段和随机抽样方面的不足,文章提出一种基于新型场景划分与考虑时序相关性的光伏出力时间序列模拟方法。首先引入Davies-Bouldin有效性指标优化模糊C均值聚类(fuzzy C-mean clustering,FCM)法,进行场景划分,形成数据特征更清晰的原始光伏出力序列集合。然后建立不同场景的光伏出力状态转移矩阵,通过马尔科夫链蒙特卡洛法生成光伏出力时间序列,在此过程中,利用Copula理论进行条件概率抽样生成下一时刻光伏出力状态值,以降低传统蒙特卡洛抽样的随机性。实际算例表明,文章所提方法生成的光伏出力时间序列不仅在数据的概率统计特性方面比现有的模型结果更精确,而且更好地保留了原始序列的自相关性。
JIANG Xuechen, ZHU Junpeng, YUAN Yue, et al. Simulation method based on improved scenario division considering temporal correlation for PV output time series[J]. Electric Power Construction, 2018, 39(10): 63-70.
Focusing on the defect of raw data segmentation and random sampling for the existing Markov chains model of PV output, a simulation method of PV output time series which is based on a new type of scenario division and considering temporal correlation is proposed. Firstly, the DBI clustering effectiveness index is introduced to optimize fuzzy C-mean clustering method, and the scenes are divided into different situations and the data sets of historical PV output series with more obvious data characteristics are established. Then, a number of state transition matrixes in different scenes are generated and PV output series are simulated through Markov chains Monte Carlo method. During this process, the state-value for the next moment can be got using the Copula theory to conduct the conditional probability sampling, so as to reduce the randomness of the traditional Monte Carlo sampling. According to actual case calculation, in the new method in this article, the PV output series are not only more accurate than the existing model in probabilistic statistical features of the data, but also preserve better autocorrelation of the original sequence.
[36]
ASENSIO M, CONTRERAS J. Stochastic unit commitment in isolated systems with renewable penetration under CVaR assessment[J]. IEEE Transactions on Smart Grid, 2016, 7(3): 1356-1367.
[37]
ABDEL-AAL M A M, SELIM S Z. Risk-averse multi-product selective newsvendor problem with different market entry scenarios under CVaR criterion[J]. Computers & Industrial Engineering, 2017, 103: 250-261.
[38]
WU J K, WU Z J, WU F, et al. CVaR risk-based optimization framework for renewable energy management in distribution systems with DGs and EVs[J]. Energy, 2018, 143: 323-336.
[39]
崔杨, 李崇钢, 赵钰婷, 等. 考虑风-光-光热联合直流外送的源-网-荷多时段优化调度方法[J]. 中国电机工程学报, 2022, 42(2): 559-572.
CUI Yang, LI Chonggang, ZHAO Yuting, et al. Source-grid-load multi-time interval optimization scheduling method considering wind-photovoltaic-photothermal combined DC transmission[J]. Proceedings of the CSEE, 2022, 42(2): 559-572.
[40]
任佳星, 孙英云, 秦继朔, 等. 基于改进域对抗网络的新能源基地风光时序功率曲线生成方法[J]. 电网技术, 2024, 48(8): 3409-3417.
REN Jiaxing, SUN Yingyun, QIN Jishuo, et al. Improved domain adversarial neural networks based generation method of wind-photovoltaic power time series curves for renewable energy base[J]. Power System Technology, 2024, 48(8): 3409-3417.

Funding

National Key Research and Development Program of China(2023YFB2405900)
PDF(3084 KB)

Accesses

Citation

Detail

Sections
Recommended

/