Research Status and Prospects of Distribution Network Planning Technology Based on Artificial Intelligence

LI Jingru, LI Hongjun, MA Liang, JIANG Shigong, MU Chaoxu, SI Chenyi

Electric Power Construction ›› 2025, Vol. 46 ›› Issue (4) : 1-15.

PDF(2423 KB)
PDF(2423 KB)
Electric Power Construction ›› 2025, Vol. 46 ›› Issue (4) : 1-15. DOI: 10.12204/j.issn.1000-7229.2025.04.001
Smart Grid

Research Status and Prospects of Distribution Network Planning Technology Based on Artificial Intelligence

Author information +
History +

Abstract

[Objective] With large-scale access to distributed power sources, new energy storage, charging facilities, etc., the physical, digital, and commercial forms of distribution networks have undergone profound changes. The traditional planning method based on manual decision-making hinders distribution network optimization due to massive factors, complex structures, and numerous pieces of equipment. Artificial intelligence technology provides a feasible solution for overcoming the technical bottlenecks of distribution network planning. [Methods] In this context, this study analyzes the challenges faced by the distribution network planning process under new circumstances, including the precise spatiotemporal prediction of source-load, probabilistic balance of power and energy, coordinated planning of source-grid-load-storage, and empowerment of digitalization and intelligence. It elaborates on the current research status of artificial intelligence-based distribution network planning, focusing on key aspects such as knowledge graph construction, source-load scenario generation, power-energy balance, planning demand reduction, and intelligent network planning. [Results] This study summarizes and analyzes the issues in artificial intelligence-based distribution network planning technologies, including difficulties in processing unstructured and semi-structured data, limited scenario applicability, low accuracy in demand deduction, lack of interpretability, and high-dimensional solution spaces for planning schemes. It proposes potential solutions in technical research, such as graph learning, transfer learning, multimodal fusion, enhanced interpretability, and human-machine hybrid intelligence enhancement. [Conclusions] Compared with traditional distribution network planning methods, artificial intelligence-based distribution network planning demonstrates significant advantages of strong generalization, applicability, and scalability. However, it still faces critical issues, such as insufficient model accuracy and poor quality of generated solutions. In future work, we will continue to investigate artificial intelligence-based distribution network planning methods based on technical prospects, aiming to address the key challenges involved. This will provide references and insights for the development and digital-intelligent transformation of distribution network planning technology systems under the new power system framework.

Key words

artificial intelligence / distribution network planning / distributed generation / research status / technology prospects

Cite this article

Download Citations
LI Jingru , LI Hongjun , MA Liang , et al . Research Status and Prospects of Distribution Network Planning Technology Based on Artificial Intelligence[J]. Electric Power Construction. 2025, 46(4): 1-15 https://doi.org/10.12204/j.issn.1000-7229.2025.04.001

References

[1]
周孝信, 鲁宗相, 刘应梅, 等. 中国未来电网的发展模式和关键技术[J]. 中国电机工程学报, 2014, 34(29): 4999-5008.
ZHOU Xiaoxin, LU Zongxiang, LIU Yingmei, et al. Development models and key technologies of future grid in China[J]. Proceedings of the CSEE, 2014, 34(29): 4999-5008.
[2]
李鹏, 王瑞, 冀浩然, 等. 低碳化智能配电网规划研究与展望[J]. 电力系统自动化, 2021, 45(24): 10-21.
LI Peng, WANG Rui, JI Haoran, et al. Research and prospect of planning for low-carbon smart distribution network[J]. Automation of Electric Power Systems, 2021, 45(24): 10-21.
[3]
刘洪波, 刘珅诚, 盖雪扬, 等. 高比例新能源接入的主动配电网规划综述[J]. 发电技术, 2024, 45(1): 151-161.
Abstract
新能源以分布式电源的形式接入配电网,给系统带来了不可控性、随机性和波动性问题。借助现代电力电子、信息通信及自动控制等技术,灵活可控的主动配电网成为发展趋势,其中主动配电网规划是近年来研究的热点之一。综合国内外在这一领域的研究成果,对主动配电网规划相关研究内容及其方法进行总结、分析及展望。对主动配电网基本结构进行了描述,介绍了配电网组成元素的特点;根据其控制变量的不同,对主动配电网规划模型进行了归类,总结了模型中的优化目标;针对常用模型求解算法及其优缺点进行分析、总结;通过对关键性问题的讨论,分析了未来主动配电网的发展趋势。
LIU Hongbo, LIU Shencheng, GAI Xueyang, et al. Overview of active distribution network planning with high proportion of new energy access[J]. Power Generation Technology, 2024, 45(1): 151-161.

The new energy is connected to the distribution network in the form of distributed generation, which brings uncontrollability, randomness and volatility to the system. With the help of modern power electronics, information and communication and automatic control technologies, the active distribution network with flexibility and controllability has become a development trend. The active distribution network planning is one of the major research fields in recent years. Based on the research results in this field at home and abroad, the research contents and methods of active distribution network planning were summarized, analyzed and prospected. The basic structure of the active distribution network was described, and the characteristics of the components of the distribution network were introduced. According to the different control variables, the planning models of active distribution network were classified, the optimization objectives in the model were summarized. The commonly used model solving algorithms and their advantages and disadvantages were analyzed and summarized. Through the discussion of key issues, the development trend of active distribution network in the future was analyzed.

[4]
陈羽飞, 赵琦, 何永君, 等. 人工智能在电力系统中的应用综述[J]. 分布式能源, 2023, 8(6): 49-57.
CHEN Yufei, ZHAO Qi, HE Yongjun, et al. An overview of the application of artificial intelligence in power systems[J]. Distributed Energy, 2023, 8(6): 49-57.
[5]
周孝信, 陈树勇, 鲁宗相, 等. 能源转型中我国新一代电力系统的技术特征[J]. 中国电机工程学报, 2018, 38(7): 1893-1904, 2205.
ZHOU Xiaoxin, CHEN Shuyong, LU Zongxiang, et al. Technology features of the new generation power system in China[J]. Proceedings of the CSEE, 2018, 38(7): 1893-1904, 2205.
[6]
董旭柱, 华祝虎, 尚磊, 等. 新型配电系统形态特征与技术展望[J]. 高电压技术, 2021, 47(9): 3021-3035.
DONG Xuzhu, HUA Zhuhu, SHANG Lei, et al. Morphological characteristics and technology prospect of new distribution system[J]. High Voltage Engineering, 2021, 47(9): 3021-3035.
[7]
国家能源局. 关于新形势下配电网高质量发展的指导意见[EB/OL]. (2024-02-06)[2024-04-06]. https://zfxxgk.ndrc.gov.cn/web/iteminfo.jsp?id=20342.
National Energy Administration. Guidance on high-quality development of distribution network under the new situation[EB/OL]. (2024-02-06)[2024-04-06]. https://zfxxgk.ndrc.gov.cn/web/iteminfo.jsp?id=20342.
[8]
肖白, 郭蓓. 配电网规划研究综述与展望[J]. 电力自动化设备, 2018, 38(12): 200-211, 217.
XIAO Bai, GUO Bei. Review and prospect of distribution network planning[J]. Electric Power Automation Equipment, 2018, 38(12): 200-211, 217.
[9]
毕聪博, 唐聿劼, 罗永红, 等. 电力系统优化控制中强化学习方法应用及挑战[J]. 中国电机工程学报, 2024, 44(1): 1-22.
BI Congbo, TANG Yujie, LUO Yonghong, et al. Review on critical problems in reinforcement learning methods applied in power system optimization and control scenarios[J]. Proceedings of the CSEE, 2024, 44(1): 1-22.
[10]
朱涛, 海迪, 李文云, 等. 基于图神经网络与强化学习的配电网电压与无功功率优化方法[J]. 南方电网技术, 2024, 18(11): 67-78.
ZHU Tao, HAI Di, LI Wenyun, et al. Voltage and reactive power optimization method for distribution networks based on graph neural network and reinforcement learning[J]. Southern Power System Technology, 2024, 18(11): 67-78.
[11]
刘盾盾, 柳璐, 程浩忠, 等. 基于广义主从分裂理论与配电网相协同的输电网规划方法[J]. 中国电机工程学报, 2021, 41(17): 5856-5866.
LIU Dundun, LIU Lu, CHENG Haozhong, et al. Transmission expansion planning coordinated with distribution networks based on generalized master-slave splitting theory[J]. Proceedings of the CSEE, 2021, 41(17): 5856-5866.
[12]
廖美英, 胡列豪, 张勇军, 等. 人工智能技术在发电厂智能化建设中的应用与挑战[J]. 广东电力, 2024, 37(11): 109-119.
LIAO Meiying, HU Liehao, ZHANG Yongjun, et al. Applications and challenges of AI technology in power plant intelligent construction[J]. Guangdong Electric Power, 2024, 37(11): 109-119.
[13]
蔡昌春, 何捷, 承敏钢, 等. 基于改进VMD-MCKD和深度残差网络的风机齿轮箱故障诊断[J]. 山东电力技术, 2024, 51(2): 67-78.
CAI Changchun, HE Jie, CHENG Mingang, et al. Fault diagnosis of fan gearbox based on improved VMD-MCKD and deep residual network[J]. Shandong Electric Power, 2024, 51(2): 67-78.
[14]
喻磊, 谈竹奎, 王扬, 等. 基于深度强化学习的电动汽车有序充电优化方法[J]. 南方电网技术, 2024, 18(12): 148-155.
YU Lei, TAN Zhukui, WANG Yang, et al. Deep reinforcement learning based optimization method for ordered charging of electric vehicle[J]. Southern Power System Technology, 2024, 18(12): 148-155.
[15]
吴雪琼, 夏栋. 新型主动配电网智能规划与决策技术研究综述[J]. 综合智慧能源, 2023, 45(11): 20-26.
Abstract
随着新型电力系统加速构建,主动可再生分布式能源日益普及,无源配电网正迅速转变为有源配电网,但可再生电源具有间歇性和不可控性,大量可再生能源的渗透给网络的安全可靠运行带来了严重问题。主动配电网作为解决大规模分布式能源接入及配网优化运行问题的有效解决方案,为了保持电网的最佳运行状态,大量学者围绕主动配电网管理这一主题进行了广泛研究。从主动配电网智能规划技术、主动配电网智能决策与控制技术、主动配电网供电恢复技术与主动配电网负荷管理技术等相关重点领域出发,分析了主动配电网关键技术的研究现状,阐述了国内外主动配电网的研究进展,指出未来的研究方向主要是考虑各种不确定性及其时间和空间相关性的鲁棒规划等。
WU Xueqiong, XIA Dong. Review on intelligent planning and decision-making technology for the new active distribution network[J]. Integrated Intelligent Energy, 2023, 45(11): 20-26.

With the accelerating construction of new power system and popularity of active renewable distributed energy,passive distribution networks are moving towards active distribution networks quickly.However,renewable power is intermittent and uncontrollable,and the penetration of high-proportion renewable energy has brought serious threats to the safe and reliable operation of networks.Active distribution network is an effective solution for large-scale distributed energy grid connection and distribution network optimal operation.To maintain the optimal operation state of the power grid, scholars have conducted extensive researches about active distribution network management.The hot issues in this field include active distribution network planning,active distribution network intelligent decision-making,active distribution network power supply restoration and active distribution network load management. The progress made in these key technologies and the status quos of active distribution networks at home and abroad are analysed. And the analysis results show that the robust planning for active distribution networks taking uncertainties and temporal and spatial correlations into consideration is the development direction for the following studies.

[16]
徐岩, 陈嘉岳, 马天祥. 基于混合强化学习的主动配电网故障恢复方法[J]. 电力系统及其自动化学报, 2024, 36(4):50-58.
XU Yan, CHEN Jiayue, MA Tianxiang. Fault recovery method of active distribution network based on hybrid reinforcement learning[J]. Proceedings of the CSU-EPSA, 2024, 36(4):50-58.
[17]
吴春芳, 陈云, 黄韬, 等. 电力电缆状态感知与检测技术研究综述[J]. 高压电器, 2024, 60(10): 86-103.
WU Chunfang, CHEN Yun, HUANG Tao, et al. Overview of condition sensing and detection technology for power cables[J]. High Voltage Apparatus, 2024, 60(10): 86-103.
[18]
朱振山, 张新炳, 陈豪. 基于深度强化学习的含智能软开关配电网电压控制方法[J]. 高电压技术, 2024, 50(3): 1214-1224.
ZHU Zhenshan, ZHANG Xinbing, CHEN Hao. Voltage control method of distribution network with soft open point based on deep reinforcement learning[J]. High Voltage Engineering, 2024, 50(3): 1214-1224.
[19]
舒印彪. 配电网规划设计[M]. 北京: 中国电力出版社, 2018.
[20]
马钊, 张恒旭, 赵浩然, 等. 双碳目标下配用电系统的新使命和新挑战[J]. 中国电机工程学报, 2022, 42(19): 6931-6945.
MA Zhao, ZHANG Hengxu, ZHAO Haoran, et al. New mission and challenge of power distribution and consumption system under dual-carbon target[J]. Proceedings of the CSEE, 2022, 42(19): 6931-6945.
[21]
姜颖, 祁云嵩. 面向人工智能深度学习的知识图谱补全技术与应用综述[J]. 计算机测量与控制, 2024, 32(5): 8-16.
JIANG Ying, QI Yunsong. Overview of knowledge graph completion technology and applications for deep learning in artificial intelligence[J]. Computer Measurement & Control, 2024, 32(5): 8-16.
[22]
徐朝兵, 杜江, 郜晓娜, 等. 基于知识图谱的电力系统调度运行风险联动模型[J]. 电气自动化, 2024, 46(6): 61-63.
XU Chaobing, DU Jiang, GAO Xiaona, et al. Risk linkage model for power system dispatching and operation based on knowledge graph[J]. Electrical Automation, 2024, 46(6): 61-63.
[23]
乔骥, 王新迎, 闵睿, 等. 面向电网调度故障处理的知识图谱框架与关键技术初探[J]. 中国电机工程学报, 2020, 40(18): 5837-5849.
QIAO Ji, WANG Xinying, MIN Rui, et al. Framework and key technologies of knowledge-graph-based fault handling system in power grid[J]. Proceedings of the CSEE, 2020, 40(18): 5837-5849.
[24]
蔺家骏, 闫玮丹, 胡俊华, 等. 多模态知识图谱在电力运检中的应用与展望[J]. 综合智慧能源, 2024, 46(1): 65-74.
Abstract
在构建以新能源为主体的新型电力系统背景下,知识图谱(KG)作为可视化的大型语义网络在电力运检中的应用处于快速发展阶段。近年来,KG在电力运检的应用主要集中在语义信息方面,然而电网运行中会产生大量异构数据,足以支撑构建多模态知识图谱(MMKG),为多种下游任务提供数据支持。从电力运检的功能需求出发提出引入MMKG解决综合智能问答系统和故障处置问题,重点介绍了针对电力运检数据的MMKG构建技术,总结了MMKG能够发挥作用的电力运检功能场景,并对未来发展方向做出展望,最后深入分析了发展MMKG会面临的挑战,为电力运检智能化发展与建设提供参考。
LIN Jiajun, YAN Weidan, HU Junhua, et al. Application and prospect of multimodal knowledge graph in electric power operation inspection[J]. Integrated Intelligent Energy, 2024, 46(1): 65-74.

In the context of building a new power system with new energy as the main body,knowledge graph(KG),a large-scale visual semantic network,is expanding its applications rapidly in power operation and inspection. The applications of KG in power operation and inspection mainly focus on semantic information processing. However,a large amount of heterogeneous data will be generated in power grid operation,being able to uphold the construction of multimodal knowledge graph(MMKG) which provides data support for various downstream tasks. In view of functional requirements on electric power inspection, MMKG is introduced to support the intelligent query answering system and fault handling. Expounding the construction technology of MMKG for power inspection data,the scenarios of power operation and inspection that MMKG can give full play in are summarized,and the development direction is forecasted. Finally,the challenges that will be faced by MMKG is analyzed comprehensively,which provides a reference for the development of intelligent power operation and inspection.

[25]
蒲天骄, 谈元鹏, 彭国政, 等. 电力领域知识图谱的构建与应用[J]. 电网技术, 2021, 45(6): 2080-2091.
PU Tianjiao, TAN Yuanpeng, PENG Guozheng, et al. Construction and application of knowledge graph in the electric power field[J]. Power System Technology, 2021, 45(6): 2080-2091.
[26]
宋玮琼, 韩柳, 羡慧竹, 等. 基于GCN的配电网知识图谱构建及应用[J]. 电子设计工程, 2022, 30(7): 160-164.
SONG Weiqiong, HAN Liu, XIAN Huizhu, et al. Construction and application of GCN-based distribution network knowledge graph[J]. Electronic Design Engineering, 2022, 30(7): 160-164.
[27]
YANG L Y, LV C, WANG X, et al. Collective entity alignment for knowledge fusion of power grid dispatching knowledge graphs[J]. IEEE/CAA Journal of Automatica Sinica, 2022, 9(11): 1990-2004.
[28]
张晓华, 刘道伟, 李柏青, 等. 信息驱动的大电网运行态势知识图谱框架及构建模式研究[J]. 中国电机工程学报, 2024, 44(11): 4167-4181.
ZHANG Xiaohua, LIU Daowei, LI Baiqing, et al. Research on information-driven operation situation knowledge graph framework and construction mode of large power grid[J]. Proceedings of the CSEE, 2024, 44(11): 4167-4181.
[29]
叶欣智, 尚磊, 董旭柱, 等. 面向配电网故障处置的知识图谱研究与应用[J]. 电网技术, 2022, 46(10): 3739-3749.
YE Xinzhi, SHANG Lei, DONG Xuzhu, et al. Knowledge graph for distribution network fault handling[J]. Power System Technology, 2022, 46(10): 3739-3749.
[30]
许琴, 刘一鸣, 陈志刚, 等. 负荷水平约束条件下新能源出力场景生成新方法[J/OL]. 南方电网技术, 2024, 1-12.[2024-05-10]. http://kns.cnki.net/kcms/detail/44.1643.TK.20240520.1637.016.html.
XU Qin, LIU Yiming, CHEN Zhigang, et al. A new method for generating new energy output scenarios with load level constraints[J/OL]. Southern Power System Technology, 2024, 1-12. [2024-05-10]. http://kns.cnki.net/kcms/detail/44.1643.TK.20240520.1637.016.html.
[31]
于唯一, 王慧芳, 曹芬, 等. 考虑场景缩减和动态寿命的用户侧新能源配储研究[J]. 电测与仪表, 2024, 61(9): 127-136.
YU Weiyi, WANG Huifang, CAO Fen, et al. Research on user-side energy storage configuration for renewable energy considering scenario reduction and dynamic lifetime[J]. Electrical Measurement & Instrumentation, 2024, 61(9): 127-136.
[32]
朱陈政翰, 柳东歌, 黄津钜, 等. 基于渐进式增长生成对抗网络的月度源荷场景生成[J]. 高电压技术, 2024, 50(9): 3955-3964.
ZHU Chenzhenghan, LIU Dongge, HUANG Jinju, et al. Monthly source and load scenario generation based on progressive growing of generative adversarial nets[J]. High Voltage Engineering, 2024, 50(9): 3955-3964.
[33]
黄津钜, 赵鹏飞, 周航, 等. 基于典型源荷耦合模式的中长期时序场景生成[J]. 全球能源互联网, 2024, 7(3): 271-282.
HUANG Jinju, ZHAO Pengfei, ZHOU Hang, et al. Medium-and long-term time-series scenarios generation based on typical source-load coupling modes[J]. Journal of Global Energy Interconnection, 2024, 7(3): 271-282.
[34]
史昭娣, 黄越辉, 李湃, 等. 计及深度信念网络场景生成的风/光/储协同优化规划方法[J]. 电网技术, 2023, 47(4): 1331-1342.
SHI Zhaodi, HUANG Yuehui, LI Pai, et al. Collaborative optimization planning for wind/PV/storage based on scenario generated by deep belief network[J]. Power System Technology, 2023, 47(4): 1331-1342.
[35]
DÍAZ G, GÓMEZ-ALEIXANDRE J, COTO J. Wind power scenario generation through state-space specifications for uncertainty analysis of wind power plants[J]. Applied Energy, 2016, 162: 21-30.
[36]
朱瑞金, 廖文龙, 王玥珑, 等. 基于生成矩匹配网络的光伏和风电随机场景生成[J]. 高电压技术, 2022, 48(1): 374-385.
ZHU Ruijin, LIAO Wenlong, WANG Yuelong, et al. Stochastic scenarios generation for wind power and photovoltaic system based on generative moment matching network[J]. High Voltage Engineering, 2022, 48(1): 374-385.
[37]
郭雨涵, 吴君, 郁丹, 等. 基于AM- GAN的源荷场景生成方法研究[J]. 自动化仪表, 2022, 43(12): 13-18.
GUO Yuhan, WU Jun, YU Dan, et al. Research on source load scene generation method based on AM- GAN[J]. Process Automation Instrumentation, 2022, 43(12): 13-18.
[38]
廖文龙, 杨德昌, 葛磊蛟, 等. 基于像素卷积生成网络的可再生能源场景生成[J]. 高电压技术, 2022, 48(4): 1320-1331.
LIAO Wenlong, YANG Dechang, GE Leijiao, et al. Renewable energy scenario generation based on pixel convolutional generative networks[J]. High Voltage Engineering, 2022, 48(4): 1320-1331.
[39]
钱涛, 任孟极, 邵成成, 等. 基于深度学习考虑出行模式的电动汽车充电负荷场景生成[J]. 电力系统自动化, 2022, 46(12): 67-75.
QIAN Tao, REN Mengji, SHAO Chengcheng, et al. Deep-learning-based electric vehicle charging load scenario generation considering travel mode[J]. Automation of Electric Power Systems, 2022, 46(12): 67-75.
[40]
张昆明, 蔡珊珊, 章天晗, 等. 考虑多维时域特征的行业中长期负荷预测方法[J]. 电力系统自动化, 2023, 47(20): 104-114.
ZHANG Kunming, CAI Shanshan, ZHANG Tianhan, et al. Medium-and long-term industry load forecasting method considering multi-dimensional temporal features[J]. Automation of Electric Power Systems, 2023, 47(20): 104-114.
[41]
GUO L, WANG J, PENG H, et al. Medium-long-term electricity load forecasting based on NSNP systems and attention mechanism[J]. Journal of Membrane Computing, 2024, 6(1): 16-28.
[42]
游铭豪, 顾洁, 储琳琳, 等. “双碳” 背景下结合系统动力学和弹性网络回归的区域电力需求中长期预测方法[J]. 供用电, 2024, 41(7): 72-83.
YOU Minghao, GU Jie, CHU Linlin, et al. A mid-long regional electricity demand forecasting method based on system dynamics and elastic network regression under dual carbon targets[J]. Distribution & Utilization, 2024, 41(7): 72-83.
[43]
方鹏, 高亚栋, 潘国兵, 等. 基于LSTM神经网络的中长期光伏电站发电量预测方法研究[J]. 可再生能源, 2022, 40(1): 48-54.
FANG Peng, GAO Yadong, PAN Guobing, et al. Research on forecasting method of mid-and long-term photovoltaic power generation based on LSTM neural Network[J]. Renewable Energy Resources, 2022, 40(1): 48-54.
[44]
罗澍忻, 麻敏华, 蒋林, 等. 考虑多时间尺度数据的中长期负荷预测方法[J]. 中国电机工程学报, 2020, 40(S1): 11-19.
LUO Shuxin, MA Minhua, JIANG Lin, et al. Medium and long-term load forecasting method considering multi-time scale data[J]. Proceedings of the CSEE, 2020, 40(S1): 11-19.
[45]
JIANG Y X, HUANG Q Q, ZHANG K M, et al. Medium-long term load forecasting method considering industry correlation for power management[J]. Energy Reports, 2021, 7: 1231-1238.
[46]
LI F, SUN C J, HAN W, et al. Medium-term load forecasting of power system based on BiLSTM and parallel feature extraction network[J]. IET Generation, Transmission & Distribution, 2024, 18(1): 190-201.
[47]
XIANG W, XU P, FANG J L, et al. Multi-dimensional data-based medium- and long-term power-load forecasting using double-layer CatBoost[J]. Energy Reports, 2022, 8: 8511-8522.
[48]
张籍, 薛儒涛, 刘慧, 等. 基于深度信念网络的不同行业中长期负荷预测[J]. 电力系统及其自动化学报, 2019, 31(9): 12-19, 27.
ZHANG Ji, XUE Rutao, LIU Hui, et al. Medium-and long-term load forecasting for different industries based on deep belief network[J]. Proceedings of the CSU-EPSA, 2019, 31(9): 12-19, 27.
[49]
徐源, 程潜善, 李阳, 等. 基于大数据聚类的电力系统中长期负荷预测[J]. 电力系统及其自动化学报, 2017, 29(8): 43-48.
XU Yuan, CHENG Qianshan, LI Yang, et al. Mid-long term load forecasting of power system based on big data clustering[J]. Proceedings of the CSU-EPSA, 2017, 29(8): 43-48.
[50]
陈典, 陆润钊, 张松涛, 等. 新型电力系统电力电量平衡计算分析技术综述[J]. 电网技术, 2023, 47(10): 3952-3970.
CHEN Dian, LU Runzhao, ZHANG Songtao, et al. Review of new power system power balance calculation and analysis techniques[J]. Power System Technology, 2023, 47(10): 3952-3970.
[51]
李明节, 陈国平, 董存, 等. 新能源电力系统电力电量平衡问题研究[J]. 电网技术, 2019, 43(11): 3979-3986.
LI Mingjie, CHEN Guoping, DONG Cun, et al. Research on power balance of high proportion renewable energy system[J]. Power System Technology, 2019, 43(11): 3979-3986.
[52]
朱睿, 胡博, 谢开贵, 等. 含风电-光伏-光热-水电-火电-储能的多能源电力系统时序随机生产模拟[J]. 电网技术, 2020, 44(9): 3246-3253.
ZHU Rui, HU Bo, XIE Kaigui, et al. Sequential probabilistic production simulation of multi-energy power system with wind power, photovoltaics, concentrated solar power, cascading hydro power, thermal power and battery energy storage[J]. Power System Technology, 2020, 44(9): 3246-3253.
[53]
魏利屾, 艾小猛, 方家琨, 等. 面向新型电力系统的时序生产模拟应用与求解技术综述[J]. 电力系统自动化, 2024, 48(6): 170-184.
WEI Lishen, AI Xiaomeng, FANG Jiakun, et al. Review on applications and solving techniques of time-series production simulation for new power system[J]. Automation of Electric Power Systems, 2024, 48(6): 170-184.
[54]
杨钤, 王建学, 杨续松, 等. 电力电量平衡分析及其加速求解技术的发展、应用与展望[J]. 电网技术, 2024, 48(2): 760-778.
YANG Qian, WANG Jianxue, YANG Xusong, et al. Development, application and prospect of power and energy balance analysis and its speedup computation technologies[J]. Power System Technology, 2024, 48(2): 760-778.
[55]
鲁宗相, 林弋莎, 乔颖, 等. 极高比例可再生能源电力系统的灵活性供需平衡[J]. 电力系统自动化, 2022, 46(16): 3-16.
LU Zongxiang, LIN Yisha, QIAO Ying, et al. Flexibility supply-demand balance in power system with ultra-high proportion of renewable energy[J]. Automation of Electric Power Systems, 2022, 46(16): 3-16.
[56]
WU T, ZHANG Y A, WANG S Y. Deep learning to optimize: security-constrained unit commitment with uncertain wind power generation and BESSs[J]. IEEE Transactions on Sustainable Energy, 2022, 13(1): 231-240.
[57]
HOU Q C, DU E S, ZHANG N, et al. Impact of high renewable penetration on the power system operation mode: a data-driven approach[J]. IEEE Transactions on Power Systems, 2020, 35(1): 731-741.
[58]
LI M X, WEI W, CHEN Y, et al. Learning the optimal strategy of power system operation with varying renewable generations[J]. IEEE Transactions on Sustainable Energy, 2021, 12(4): 2293-2305.
[59]
陈图南, 李文萱, 李云, 等. “双碳” 背景下碳-绿证-电力市场耦合机制综述[J]. 广东电力, 2024, 37(8): 14-25.
CHEN Tunan, LI Wenxuan, LI Yun, et al. Review on coupling mechanism of carbon, green certificate and power market under the background of carbon peaking and carbon neutrality[J]. Guangdong Electric Power, 2024, 37(8): 14-25.
[60]
王成山, 王瑞, 于浩, 等. 配电网形态演变下的协调规划问题与挑战[J]. 中国电机工程学报, 2020, 40(8): 2385-2396.
WANG Chengshan, WANG Rui, YU Hao, et al. Challenges on coordinated planning of smart distribution networks driven by source-network-load evolution[J]. Proceedings of the CSEE, 2020, 40(8): 2385-2396.
[61]
张思东, 陈后全, 唐超, 等. 基于改进粒子群算法的主动配电网网架优化研究[J]. 电气应用, 2020, 39(1): 67-73.
ZHANG Sidong, CHEN Houquan, TANG Chao, et al. Research on optimization of active distribution network frame with improved particle swarm optimization algorithm[J]. Electrotechnical Application, 2020, 39(1): 67-73.
[62]
刘永强, 郑宁宁, 邵云峰, 等. 基于混合粒子群优化的含分布式电源配电网分层规划方法研究[J]. 智慧电力, 2019, 47(12): 85-92.
LIU Yongqiang, ZHENG Ningning, SHAO Yunfeng, et al. Bi-level planning method for distribution network with distributed generations based on hybrid particle swarm optimization[J]. Smart Power, 2019, 47(12): 85-92.
[63]
于艾清, 濮梦燕, 王育飞, 等. 基于改进鲸鱼算法的分布式电源规划方法[J]. 电测与仪表, 2024, 61(8): 63-69.
YU Aiqing, PU Mengyan, WANG Yufei, et al. Planning method for distributed generation based on improved WOA[J]. Electrical Measurement & Instrumentation, 2024, 61(8): 63-69.
[64]
刘帅, 孔亮, 刘自发, 等. 基于深度强化学习的输电网网架规划方法[J]. 电力建设, 2021, 42(7): 101-109.
Abstract
为解决现有输电网规划方法在多场景情况下存在的灵活性不足的问题,同时进一步提高规划方法的运算效率,文章提出一种基于深度强化学习的输电网规划方法。首先,通过聚类方法,以系统信息熵最小为目标,生成用于规划的电网典型场景,并建立适用于多场景的输电网灵活规划模型。其次,综合运用深度强化学习方法及Actor-Critic方法,提出适用于输电网规划的改进指针网络模型,并采用改进指针网络与Actor-Critic结合的方法(revised pointer network with Actor-Critic, RPNAC)对规划模型进行求解。最后,基于IEEE标准算例进行计算及数据分析,验证了文章所提方法的科学性和高效性。
LIU Shuai, KONG Liang, LIU Zifa, et al. Transmission network planning method based on deep reinforcement learning[J]. Electric Power Construction, 2021, 42(7): 101-109.

In order to solve the problem that the existing transmission network planning methods are not flexible enough in multiple scenarios, and to improve the operation efficiency of the planning methods, this paper proposes a transmission network planning method based on deep reinforcement learning. Firstly, this paper uses scenario information entropy to generate a variety of typical scenarios, and establishes a flexible transmission network planning model suitable for multiple scenarios. Secondly, an improved pointer network model suitable for transmission network planning is proposed by using the deep reinforcement learning method and the actor critical method, and the revised pointer network with Actor-Critic (RPNAC) method is used to solve the planning model. Finally, an example verifies the effectiveness and feasibility of the proposed method.

[65]
于琳琳, 贾鹏, 杨游航, 等. 计及短路比约束的新能源场站布点及网架协调规划方法[J]. 电力建设, 2024, 45(10): 24-33.
YU Linlin, JIA Peng, YANG Youhang, et al. Coordinated planning method for new energy station siting and network considering short circuit ratio constraints[J]. Electric Power Construction, 2024, 45(10): 24-33.
[66]
邱洁, 梁财豪, 朱永强, 等. 考虑氢能储运特性的配电网集群划分与氢能系统选址定容策略[J]. 中国电力, 2024, 57(8): 12-22.
QIU Jie, LIANG Caihao, ZHU Yongqiang, et al. Cluster configuration of electric-hydrogen coupled distribution network considering hydrogen energy transport characteristics[J]. Electric Power, 2024, 57(8): 12-22.
[67]
郑重, 苗世洪, 张松岩, 等. 基于极限学习机的输配一体储能系统选址定容协同优化策略[J]. 电力自动化设备, 2022, 42(2): 31-40.
ZHENG Zhong, MIAO Shihong, ZHANG Songyan, et al. Collaborative optimization strategy for location and capacity determination of energy storage system considering transmission and distribution integration based on extreme learning machine[J]. Electric Power Automation Equipment, 2022, 42(2): 31-40.
[68]
李楠, 谷凯凯, 顾然, 等. 基于聚类的供电网格电源点选址定容方法[J]. 电网与清洁能源, 2022, 38(5): 10-15.
LI Nan, GU Kaikai, GU Ran, et al. A method for power source location and capacity determination in grids based on cluster analysis[J]. Power System and Clean Energy, 2022, 38(5): 10-15.
[69]
柴雁欣, 向月, 刘俊勇. 面向可靠性提升的关联规则驱动下配电网投资规划优选模型与方法[J]. 电力自动化设备, 2020, 40(3): 85-92.
CHAI Yanxin, XIANG Yue, LIU Junyong. Optimization model and method of distribution network investment planning driven by correlation rules for reliability improvement[J]. Electric Power Automation Equipment, 2020, 40(3): 85-92.
[70]
米阳, 周杰, 卢长坤, 等. 基于改进生成对抗网络与碳足迹的配电网多目标双层规划[J]. 中国电机工程学报, 2024, 44(21): 8421-8435.
MI Yang, ZHOU Jie, LU Changkun, et al. A multi-objective bi-level planning of distribution network based on improved generative adversarial network and carbon footprint[J]. Proceedings of the CSEE, 2024, 44(21): 8421-8435.
[71]
吴军, 王义贺, 薛龙江, 等. 基于卷积算法的指标权重模型在配电网建设项目后评价的研究[J]. 计算机应用与软件, 2022, 39(8): 93-98, 104.
WU Jun, WANG Yihe, XUE Longjiang, et al. Research on index weight model based on convolution algorithm in post evaluation of distribution network construction project[J]. Computer Applications and Software, 2022, 39(8): 93-98, 104.
[72]
赵紫昱, 陈渊睿, 陈霆威, 等. 基于时空图注意力网络的超短期区域负荷预测[J]. 电力系统自动化, 2024, 48(12): 147-155.
ZHAO Ziyu, CHEN Yuanrui, CHEN Tingwei, et al. Ultra-short-term regional load forecasting based on spatio-temporal graph attention network[J]. Automation of Electric Power Systems, 2024, 48(12): 147-155.
[73]
吕奇峰, 陈颖, 肖谭南, 等. 基于图注意力网络的配电网超分辨率量测生成方法[J]. 电力系统自动化, 2023, 47(5): 26-34.
LYU Qifeng, CHEN Ying, XIAO Tannan, et al. Super-resolution measurement generation method for distribution network based on graph attention network[J]. Automation of Electric Power Systems, 2023, 47(5): 26-34.
[74]
孙水发, 李小龙, 李伟生, 等. 图神经网络应用于知识图谱推理的研究综述[J]. 计算机科学与探索, 2023, 17(1): 27-52.
Abstract
知识推理(KR)作为知识图谱构建的一个重要环节,一直是该领域研究的焦点问题。随着知识图谱应用研究的不断深入和范围的不断扩大,将图神经网络(GNN)应用于知识推理的方法能够在获取知识图谱中实体、关系等语义信息的同时,充分考虑知识图谱的结构信息,使其具备更好的可解释性和更强的推理能力,因此近年来受到广泛关注。首先梳理了知识图谱和知识推理的基本知识及研究现状,简要介绍了基于逻辑规则、基于表示学习、基于神经网络和基于图神经网络的知识推理的优势与不足;其次全面总结了基于图神经网络的知识推理最新进展,将基于图神经网络的知识推理按照基于递归图神经网络(RecGNN)、卷积图神经网络(ConvGNN)、图自编码网络(GAE)和时空图神经网络(STGNN)的知识推理进行分类,对各类典型网络模型进行了介绍和对比分析;然后介绍了基于图神经网络的知识推理在医学、智能制造、军事、交通等领域的应用;最后提出了基于图神经网络的知识推理的未来研究方向,并对这个快速增长领域中的各方向研究进行了展望。
SUN Shuifa, LI Xiaolong, LI Weisheng, et al. Review of graph neural networks applied to knowledge graph reasoning[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(1): 27-52.
[75]
吴越, 孙海春. 基于图神经网络的知识图谱补全研究综述[J]. 数据分析与知识发现, 2024, 8(3): 10-28.
Abstract
【目的】通过调研和梳理文献,总结基于图神经网络的知识图谱补全方法。【文献范围】以“Knowledge Graph Completion”、“知识图谱补全”作为检索词在Web of Science、DBLP和CNKI数据库中进行检索,共筛选出79篇文献。【方法】分别归纳总结图卷积神经网络、图注意力网络、图自动编码网络三种基于图神经网络的知识图谱补全方法类别,并对每种类别的技术脉络、典型方法、模型框架优缺点等进行对比论述。【结果】运用知识图谱补全任务的常用数据集和评价指标,从MRR、MR、Hit@k等性能评价角度对各类模型的效果进行对比分析,并对未来研究提出展望。【局限】在实验结果对比中,只讨论了FB15K-237和WN18RR数据集上部分应用较广的模型的评估结果,缺乏全部模型在同一数据集上的对比。【结论】相比基于表示学习模型和基于神经网络模型,基于图神经网络模型具有更好的图谱补全性能,但模型关系复杂性高、过平滑、可扩展性通用性差,这也是未来研究要解决的问题。
WU Yue, SUN Haichun. An overview of research on knowledge graph completion based on graph neural network[J]. Data Analysis and Knowledge Discovery, 2024, 8(3): 10-28.

[Objective] This paper summarizes the knowledge graph completion methods based on graph neural network through research and literature review. [Coverage] With “knowledge graph completion” as search terms to retrieve literature from the Web of Science, DBLP and CNKI, a total of 79 representative literature were screened out for review. [Methods] Based on the model structure, three knowledge graph completion methods based on graph neural networks were summarized, including graph convolutional neural networks, graph attention networks, and graph auto encoder. [Results] Using common data sets and evaluation indicators for knowledge graph completion tasks, the effects of various models were comparatively analyzed in terms of MRR, MR, Hit@k and other performance evaluations, and prospects for future research were suggested. [Limitations] In the comparison of experimental results, only the evaluation results of some widely used models on the FB15K-237 and WN18RR datasets are discussed, the comparison of all models on the same dataset is lacking. [Conclusions] Compared with the representation learning model and the neural network model, the graph neural network model has better performance, but it still faces difficulties such as high complexity of model relationships, over-smoothness, and poor scalability and universality.

[76]
王继东, 王泽平, 张迪. 基于递归图和预训练迁移学习的电能质量扰动分类[J/OL]. 南方电网技术, 2024, 1-10. [2025-04-28]. http://kns.cnki.net/kcms/detail/44.1643.tk.20240517.1116.002.html.
WANG Jidong, WANG Zeping, ZHANG Di. Power quality disturbance classification based on recursive graph and pre-trained transfer learning[J/OL]. Southern Power System Technology, 2024, 1-10. [2025-04-28]. http://kns.cnki.net/kcms/detail/44.1643.tk.20240517.1116.002.html.
[77]
杨建平, 向月, 刘俊勇. 面向配电网投资决策的小样本关联规则自适应迁移学习方法[J]. 中国电机工程学报, 2022, 42(16): 5823-5834, 6159.
YANG Jianping, XIANG Yue, LIU Junyong. Adaptive transfer learning of small sample correlation rules for distribution network investment decision[J]. Proceedings of the CSEE, 2022, 42(16): 5823-5834, 6159.
[78]
周鼎, 何涛, 周杰, 等. 基于迁移学习方法的架空配电线路无人机精准定位及拍摄技术研究[J]. 供用电, 2024, 41(10): 68-74, 83.
ZHOU Ding, HE Tao, ZHOU Jie, et al. Research on UAV accurate localization and photographing technology of overhead distribution network line based on migration learning method[J]. Distribution & Utilization, 2024, 41(10): 68-74, 83.
[79]
周景, 王满意, 田兆星. 基于多模态的缺陷绝缘子图像的多标签分类[J/OL]. 高电压技术,1-11.[2025-04-28].https://doi.org/10.13336/j.1003-6520.hve.20232230.
ZHOU Jing, WANG Manyi, TIAN Zhaoxing. Multi-label classification of defective insulator images based on multi-mode[J/OL]. High Voltage Engineering, 2024: 1-11. [2025-04-28].https://doi.org/10.13336/j.1003-6520.hve.20232230.
[80]
张殿元, 余传明. 基于知识增强与多模态融合的医疗视觉问答模型[J]. 数据分析与知识发现, 2024, 8(S1): 226-239.
ZHANG Dianyuan, YU Chuanming. Medical visual question answering model based on knowledge enhancement and multimodal fusion[J]. Data Analysis and Knowledge Discovery, 2024, 8(S1): 226-239.
[81]
武宇翔, 韩肖清, 牛哲文, 等. 融合多注意力深度神经网络的可解释光伏功率区间预测[J]. 电网技术, 2024, 48(7): 2928-2939.
WU Yuxiang, HAN Xiaoqing, NIU Zhewen, et al. Interpretable photovoltaic power interval prediction using multi-attention deep neural networks[J]. Power System Technology, 2024, 48(7): 2928-2939.
[82]
路宽, 杨兴森, 张绪辉, 等. 基于可解释关系模型的SCR入口气温预测[J]. 山东电力技术, 2024, 51(5): 63-72.
LU Kuan, YANG Xingsen, ZHANG Xuhui, et al. Prediction of SCR inlet gas temperature based on interpretable relationship model[J]. Shandong Electric Power, 2024, 51(5): 63-72.
[83]
韩富佳, 王晓辉, 乔骥, 等. 基于人工智能技术的新型电力系统负荷预测研究综述[J]. 中国电机工程学报, 2023, 43(22): 8569-8592.
HAN Fujia, WANG Xiaohui, QIAO Ji, et al. Review on artificial intelligence based load forecasting research for the new-type power system[J]. Proceedings of the CSEE, 2023, 43(22): 8569-8592.
[84]
WANG C X, DU Y T, CHANG Y L, et al. Human-machine collaborative reinforcement learning for power line flow regulation[J]. IEEE Transactions on Industrial Informatics, 2024, 20(4): 5087-5099.
[85]
ZHANG Y, YANG Q Y, LI D H, et al. A reinforcement and imitation learning method for pricing strategy of electricity retailer with customers’ flexibility[J]. Applied Energy, 2022, 323: 119543.
[86]
LI H J, LIANG D M, ZHOU Y, et al. Spatiotemporal charging demand models for electric vehicles considering user strategies[J]. Frontiers in Energy Research, 2023, 10: 1013154.
[87]
李鹏, 黄文琦, 梁凌宇, 等. 人机混合增强决策智能在新型电力系统调控中的应用与展望[J]. 中国电机工程学报, 2024, 44(16): 6347-6367.
LI Peng, HUANG Wenqi, LIANG Lingyu, et al. Application and prospect of hybrid human-machine decision intelligence in the dispatch and control of next-era power systems[J]. Proceedings of the CSEE, 2024, 44(16): 6347-6367.

Funding

State Grid Corporation of China Research Program(5400-202456175A-1-1-ZN)
PDF(2423 KB)

Accesses

Citation

Detail

Sections
Recommended

/