Distributed Robust Low-Carbon Economic Dispatch of Power Systems Considering Extreme Scenarios

HU Heng, QIN Jianru, LI Haibo, LIU Jiefeng

Electric Power Construction ›› 2025, Vol. 46 ›› Issue (4) : 160-172.

PDF(2365 KB)
PDF(2365 KB)
Electric Power Construction ›› 2025, Vol. 46 ›› Issue (4) : 160-172. DOI: 10.12204/j.issn.1000-7229.2025.04.014
Renewable Energy and Energy Storage

Distributed Robust Low-Carbon Economic Dispatch of Power Systems Considering Extreme Scenarios

Author information +
History +

Abstract

[Objective] Under the advancing energy transition driven by China's national "dual-carbon" strategy, the escalating penetration of renewable energy (RE) sources has not only heightened power system spinning reserve requirements due to their inherent stochasticity and volatility in generation patterns, but has also precipitated a marked surge in peak-shaving and frequency regulation expenditures necessary for maintaining power supply reliability. This dynamic further exacerbates the fundamental multi-objective conflict between economic operation costs and reliability assurance in modern power systems. Particularly, tail risks triggered by extreme weather and the dynamic mismatches between stochastic RE fluctuations and conventional unit regulation rates invalidate conventional deterministic scheduling models reliant on typical scenarios. [Methods] To address this, this paper first constructs RE generation scenarios using Latin hypercube sampling (LHS) and modified k-means clustering, verifying their reserve feasibility, while transforming reserve-infeasible scenarios into extreme scenario sets. A two-stage distributionally robust optimization (DRO) model is proposed, minimizing day-ahead operational costs and intraday costs including carbon trading, rescheduling expenses, and risk penalties. A discrete probability ambiguity set with comprehensive norm constraints is established to rigorously characterize RE uncertainty by incorporating extreme scenarios. [Results] Case studies on an improved IEEE 39-node system using the column-and-constraint generation (C&CG) algorithm demonstrate that, compared with traditional deterministic and DRO models based on typical scenarios, the proposed approach increases scheduling costs by 7.11% and 14.37% respectively, but reduces renewable curtailment rates by 8.28% and 34.65%, and load shedding rates by 8.19% and 33.32%. [Conclusions] This methodology effectively resolves the limitations of conventional approaches in coordinating economic efficiency, reliability, and low-carbon requirements while ensuring system robustness, offering a viable solution for secure operations in renewable-dominated power systems.

Key words

extreme scenarios / robust optimization of distribution / uncertainty / carbon trading

Cite this article

Download Citations
HU Heng , QIN Jianru , LI Haibo , et al. Distributed Robust Low-Carbon Economic Dispatch of Power Systems Considering Extreme Scenarios[J]. Electric Power Construction. 2025, 46(4): 160-172 https://doi.org/10.12204/j.issn.1000-7229.2025.04.014

References

[1]
魏子强, 温鹏, 梁志, 等. 计及需求响应比例的园区综合能源系统低碳经济调度方法[J]. 太阳能学报, 2023, 44(10): 38-45.
Abstract
提出一种计及需求响应比例的园区综合能源系统低碳经济调度方法。首先,构建园区综合能源系统优化调度模型,并对传统式与阶梯式碳交易机制、传统式与阶梯式综合需求响应补偿机制进行建模。其次,根据不同的碳交易与综合需求响应补偿机制,设置不同场景,并采用CPLEX求解器对模型求解。最后,分析不同碳交易与综合需求响应补偿机制对系统运行成本与碳排放量的影响,并提出系统运行的低碳经济指标,对不同需求响应比例情况下系统的低碳经济性进行分析。结果表明,阶梯式碳交易机制和综合需求响应可有效提高系统的环保性和经济性,引入阶梯式综合需求响应补偿机制后,在需求响应比例为20%时系统的低碳经济指标最低。
WEI Ziqiang, WEN Peng, LIANG Zhi, et al. Low carbon economic dispatching method of park integrated energy system considering proportion of demand response[J]. Acta Energiae Solaris Sinica, 2023, 44(10): 38-45.
A low-carbon economy dispatching method for the integrated energy system of the park taking into account the demand response ratio is proposed. First of all, the optimal dispatching model of the park’s integrated energy system is established, and the traditional and stepped carbon emission trading mechanism, the traditional and stepped comprehensive demand response compensation mechanism are modelled. Secondly, different scenarios are set according to different carbon emission trading and comprehensive demand response compensation mechanisms, and CPLEX solver is used to solve the model. Finally, the impact of different carbon emission trading and comprehensive demand response compensation mechanisms on system operating costs and carbon emissions are analyzed to propose low-carbon economy indicators for system operation, and on basis of that to analyze the low-carbon economy of the system under different demand response ratios. The results show that the stepped carbon emission trading mechanism and comprehensive demand response can effectively improve the environmental protection and economy of the system. After the introduction of the stepped comprehensive demand response compensation mechanism, the low-carbon economy index of the system is the lowest when the demand response ratio is 20%.
[2]
侯慧, 何梓姻, 陈跃, 等. 基于深度强化学习区间多目标优化的智能建筑低碳优化调度[J]. 电力系统自动化, 2023, 47(21): 47-57.
HOU Hui, HE Ziyin, CHEN Yue, et al. Low-carbon optimal dispatch of smart building based on interval multi-objective optimization with deep reinforcement learning[J]. Automation of Electric Power Systems, 2023, 47(21): 47-57.
[3]
杨周义, 邢海军, 江伟建, 等. 基于低碳需求响应的含煤制氢与碳捕集电厂的综合能源系统优化调度[J]. 电力自动化设备, 2024, 44(4): 25-32.
YANG Zhouyi, XING Haijun, JIANG Weijian, et al. Optimal scheduling of integrated energy system with coal-to-hydrogen and carbon capture power plant based on low-carbon demand response[J]. Electric Power Automation Equipment, 2024, 44(4): 25-32.
[4]
刘宇, 朱琼海, 苗璐, 等. 基于同步型ADMM的含海上风电场电力系统分布鲁棒无功优化[J]. 广东电力, 2024, 37(6): 21-31.
LIU Yu, ZHU Qionghai, MIAO Lu, et al. Distributed robust reactive power optimization of power systems with offshore wind farms based on synchronous ADMM[J]. Guangdong Electric Power, 2024, 37(6): 21-31.
[5]
袁世琦, 潘鹏程, 魏业文, 等. 园区综合能源系统低碳经济优化调度模型研究[J]. 太阳能学报, 2024, 45(3): 347-356.
YUAN Shiqi, PAN Pengcheng, WEI Yewen, et al. Study on low-carbon economic optimal scheduling model of community integrated energy system[J]. Acta Energiae Solaris Sinica, 2024, 45(3): 347-356.
[6]
刘铠诚, 王关涛, 白星振, 等. 基于主从博弈的园区级综合能源系统动态定价与低碳经济调度[J]. 高电压技术, 2024, 50(4): 1436-1445.
LIU Kaicheng, WANG Guantao, BAI Xingzhen, et al. Dynamic pricing and low-carbon economic dispatch of integrated energy system based on Stackelberg game[J]. High Voltage Engineering, 2024, 50(4): 1436-1445.
[7]
葛磊蛟, 范延赫, 来金钢, 等. 面向低碳经济的人工智能赋能微电网优化运行技术[J]. 高电压技术, 2023, 49(6): 2219-2238.
GE Leijiao, FAN Yanhe, LAI Jingang, et al. Artificial intelligence enabled microgrid optimization technology for low carbon economy[J]. High Voltage Engineering, 2023, 49(6): 2219-2238.
[8]
张智泉, 陈晓杰, 符杨, 等. 基于核仁聚类估计和数据驱动分布鲁棒优化的海量异构产消者联盟能量管理策略[J]. 电力系统保护与控制, 2024, 52(7): 98-114.
ZHANG Zhiquan, CHEN Xiaojie, FU Yang, et al. Energy management strategy for massive heterogeneous prosumers alliance based on nucleolar clustering estimation and data-driven distributionally robust optimization[J]. Power System Protection and Control, 2024, 52(7): 98-114.
[9]
张虹, 孟庆尧, 马鸿君, 等. 面向提升绿证需求的跨区互联系统经济低碳调度策略[J]. 电力系统自动化, 2022, 46(22): 51-61.
ZHANG Hong, MENG Qingyao, MA Hongjun, et al. Economic and low-carbon dispatching strategy of cross-region interconnected system for promoting green certificate demand[J]. Automation of Electric Power Systems, 2022, 46(22): 51-61.
[10]
吴含欣, 董树锋, 张祥龙, 等. 考虑碳交易机制的含风电电力系统日前优化调度[J]. 电网技术, 2024, 48(1): 70-78.
WU Hanxin, DONG Shufeng, ZHANG Xianglong, et al. Optimal dispatching of power system with wind power considering carbon trading mechanism[J]. Power System Technology, 2024, 48(1): 70-78.
[11]
张振强, 王宏波, 赵阳, 等. 考虑灵活性的交直流混联配电网分布鲁棒优化运行[J]. 电力科学与技术学报, 2024, 39(2): 64-73.
ZHANG Zhenqiang, WANG Hongbo, ZHAO Yang, et al. Distributionally robust optimal operation of AC/DC hybrid distribution network considering flexibility evaluation index[J]. Journal of Electric Power Science and Technology, 2024, 39(2): 64-73.
[12]
车彬, 张泽龙, 杨燕. 考虑V2G储能特性与负荷需求响应的主动配电网低碳鲁棒调度[J]. 电网与清洁能源, 2024, 40(1): 29-39.
CHE Bin, ZHANG Zelong, YANG Yan. Research on the low-carbon robust dispatch of active distribution networks considering storage characteristics of V2G and load demand response[J]. Power System and Clean Energy, 2024, 40(1): 29-39.
[13]
张少华, 刘帅, 王晛, 等. 基于分布鲁棒优化的发电商中长期合同电量分解模型[J]. 电力系统保护与控制, 2023, 51(1): 71-80.
ZHANG Shaohua, LIU Shuai, WANG Xian, et al. A distributionally robust optimization model for power generators' medium and long-term contracted energy decomposition[J]. Power System Protection and Control, 2023, 51(1): 71-80.
[14]
庄颖睿, 程林, 齐宁, 等. 基于深度时间聚类的微电网典型场景生成方法[J]. 电力系统自动化, 2023, 47(20): 95-103.
ZHUANG Yingrui, CHENG Lin, QI Ning, et al. Typical scenario generation algorithm for microgrid based on deep temporal clustering[J]. Automation of Electric Power Systems, 2023, 47(20): 95-103.
[15]
王建辉, 包广清, 张瀚超. 一种双层-四级随机-鲁棒优化调度模型及求解[J]. 电网技术, 2024, 48(4): 1622-1632.
WANG Jianhui, BAO Guangqing, ZHANG Hanchao. A two-layer-four-level stochastic-robust optimization model and its solution[J]. Power System Technology, 2024, 48(4): 1622-1632.
[16]
彭宇文, 李瑞, 周永旺, 等. 基于IGDT和PSO-SA的综合能源系统鲁棒优化调度方法[J]. 广东电力, 2023, 36(9): 60-71.
PENG Yuwen, LI Rui, ZHOU Yongwang, et al. Robust optimal scheduling method for integrated energy system based on IGDT and PSO-SA[J]. Guangdong Electric Power, 2023, 36(9): 60-71.
[17]
黎静华, 谢育天, 曾鸿宇, 等. 不确定优化调度研究综述及其在新型电力系统中的应用探讨[J]. 高电压技术, 2022, 48(9): 3447-3464.
LI Jinghua, XIE Yutian, ZENG Hongyu, et al. Research review of uncertain optimal scheduling and its application in new-type power systems[J]. High Voltage Engineering, 2022, 48(9): 3447-3464.
[18]
周步祥, 黄伟, 臧天磊. 计及共享储能与柔性负荷的微电网鲁棒优化调度[J]. 电力科学与技术学报, 2023, 38(2): 48-57.
ZHOU Buxiang, HUANG Wei, ZANG Tianlei. Robust optimal scheduling of microgrid considering shared energy storage and flexible load[J]. Journal of Electric Power Science and Technology, 2023, 38(2): 48-57.
[19]
廖小兵, 张敏, 乐健, 等. 考虑循环寿命折损的主动配电网仿射可调鲁棒优化方法[J]. 电力系统保护与控制, 2023, 51(8): 37-49.
LIAO Xiaobing, ZHANG Min, LE Jian, et al. Affinely adjustable robust optimal operation strategy for an active distribution network considering cycle life loss[J]. Power System Protection and Control, 2023, 51(8): 37-49.
[20]
徐超然, 徐潇源, 严正, 等. 考虑风电统计特性挖掘的分布鲁棒优化调度方法[J]. 电力系统自动化, 2022, 46(2): 33-42.
XU Chaoran, XU Xiaoyuan, YAN Zheng, et al. Distributionally robust optimal dispatch method considering mining of wind power statistical characteristics[J]. Automation of Electric Power Systems, 2022, 46(2): 33-42.
[21]
张亚超, 谢仕炜, 朱蜀. 多区域互联电-气耦合系统分散协调分布鲁棒优化调度[J]. 电力系统自动化, 2022, 46(19): 31-42.
ZHANG Yachao, XIE Shiwei, ZHU Shu. Decentralized coordinated distributionally robust optimal scheduling of multi-area interconnected electricity-gas coupling system[J]. Automation of Electric Power Systems, 2022, 46(19): 31-42.
[22]
杜刚, 赵冬梅, 刘鑫. 计及风电不确定性优化调度研究综述[J]. 中国电机工程学报, 2023, 43(7): 2608-2626.
DU Gang, ZHAO Dongmei, LIU Xin. Research review on optimal scheduling considering wind power uncertainty[J]. Proceedings of the CSEE, 2023, 43(7): 2608-2626.
[23]
宋晓文, 回茜, 张雯舒. 基于多阶段鲁棒优化的多站合一能源站市场优化策略[J]. 智慧电力, 2023, 51(2): 53-60.
SONG Xiaowen, HUI Qian, ZHANG Wenshu. Market optimization strategy for multi-station integrated energy stations based on multi-stage robust optimization[J]. Smart Power, 2023, 51(2): 53-60.
[24]
赵毅, 王维庆, 闫斯哲. 考虑阶梯型碳交易的风光储联合系统分布鲁棒优化调度[J]. 电力系统保护与控制, 2023, 51(6): 127-136.
ZHAO Yi, WANG Weiqing, YAN Sizhe. Distributionally robust optimization scheduling of a joint wind-solar-storage system considering step-type carbon trading[J]. Power System Protection and Control, 2023, 51(6): 127-136.
[25]
税月, 刘俊勇, 高红均, 等. 考虑风电不确定性的电热综合系统分布鲁棒协调优化调度模型[J]. 中国电机工程学报, 2018, 38(24): 7235-7247.
SHUI Yue, LIU Junyong, GAO Hongjun, et al. A distributionally robust coordinated dispatch model for integrated electricity and heating systems considering uncertainty of wind power[J]. Proceedings of the CSEE, 2018, 38(24): 7235-7247.
[26]
葛晓琳, 刘亚, 符杨, 等. 考虑惯量支撑及频率调节全过程的分布鲁棒机组组合[J]. 中国电机工程学报, 2021, 41(12): 4043-4057.
GE Xiaolin, LIU Ya, FU Yang, et al. Distributed robust unit commitment considering the whole process of inertia support and frequency regulations[J]. Proceedings of the CSEE, 2021, 41(12): 4043-4057.
[27]
SHUI Y, GAO H J, WANG L F, et al. A data-driven distributionally robust coordinated dispatch model for integrated power and heating systems considering wind power uncertainties[J]. International Journal of Electrical Power & Energy Systems, 2019, 104: 255-258.
[28]
蒋霖, 郑倩薇, 王枫, 等. 考虑直接负荷控制与风电不确定性的输电网扩展规划[J]. 电力系统保护与控制, 2020, 48(3): 138-146.
JIANG Lin, ZHENG Qianwei, WANG Feng, et al. Transmission network expansion planning considering direct load control and wind power uncertainty[J]. Power System Protection and Control, 2020, 48(3): 138-146.
[29]
胡弘, 韦化, 李昭昱. 风电接入下核电参与电力系统调峰的协调优化模型[J]. 电力自动化设备, 2020, 40(5): 31-37.
HU Hong, WEI Hua, LI Zhaoyu. Coordinated optimization model considering nuclear power participating in peak load regulation of power system with wind power[J]. Electric Power Automation Equipment, 2020, 40(5): 31-37.
[30]
黄家祺, 张宇威, 贺继锋, 等. 一种考虑极限场景的配电网鲁棒扩展规划方法[J]. 电力建设, 2020, 41(7): 67-74.
Abstract
近年来,以风电、光伏为代表的分布式能源发展迅速,然而其出力的不确定性可能会导致出力严重偏离预测值,出现极端恶劣的场景,从而给配电网规划工作与可靠、稳定运行带来挑战。在上述背景下,文章以适应分布式能源以及负荷的不确定性为目标,以分布式电源的接入位置、安装数量以及新建线路为投资决策内容,提出了一种考虑极限场景的配电网鲁棒扩展规划方法。首先建立了配电网双层规划模型,通过大M 法和二阶锥松弛将非线性模型转化为混合整数线性模型;其次,采用极限场景法处理随机变量,建立了基于极限场景法的配电网两阶段鲁棒规划模型;然后,采用了基于极限场景法的列和约束生成(column and constraint generation,C&CG)算法进行求解;最后,仿真算例表明,文章采用的鲁棒规划方法可以增强配电网在极端情况下的普遍适应能力,提高了配电网的可靠性和经济性。
HUANG Jiaqi, ZHANG Yuwei, HE Jifeng, et al. A robust expansion planning method for distribution networks considering extreme scenarios[J]. Electric Power Construction, 2020, 41(7): 67-74.
In recent years, distributed energies represented by photovoltaic and wind power have developed rapidly. However, the uncertainty of their output will bring challenges to the distribution network planning and reliable and stable operation. Under the above background, this paper aims at adapting to the uncertainty of distributed energies and loads, taking the access location, installation quantity and new power lines of distributed power as investment decision content, and proposes a two-stage robust planning method for distribution networks. Firstly, a bi-level programming model of the distribution network is established, and the nonlinear model is transformed into a mixed integer linear model by the big M-approach and the second-order cone relaxation. Secondly, the extreme scenario method is used to deal with random variables, and a two-stage robust planning method for the distribution network is proposed. Then, the column and constraint generation based on the extreme scenario method is used to solve the problem. Finally, a 23-node distribution network example is used to verify the rationality and effectiveness of the proposed model.
[31]
张艺镨, 艾小猛, 方家琨, 等. 基于广义凸包不确定集合的数据驱动鲁棒机组组合[J]. 中国电机工程学报, 2020, 40(2): 477-486.
ZHANG Yipu, AI Xiaomeng, FANG Jiakun, et al. Data-driven robust unit commitment based on the generalized convex hull uncertainty set[J]. Proceedings of the CSEE, 2020, 40(2): 477-486.
[32]
汪超群, 韦化, 吴思缘. 计及风电不确定性的随机安全约束机组组合[J]. 电网技术, 2017, 41(5): 1419-1427.
WANG Chaoqun, WEI Hua, WU Siyuan. Stochastic-security-constrained unit commitment considering uncertainty of wind power[J]. Power System Technology, 2017, 41(5): 1419-1427.
[33]
颜远, 林舜江, 刘明波. 考虑备用动作约束的含风电场电力系统多目标动态优化调度[J]. 电网技术, 2018, 42(2): 479-486.
YAN Yuan, LIN Shunjiang, LIU Mingbo. Multi-objective optimal dynamic dispatch of power system with wind farms considering reserve action constraints[J]. Power System Technology, 2018, 42(2): 479-486.
[34]
ZHAO C Y, GUAN Y P. Data-driven stochastic unit commitment for integrating wind generation[J]. IEEE Transactions on Power Systems, 2016, 31(4): 2587-2596.
[35]
李嘉森, 王进, 杨蒙, 等. 基于随机优化的虚拟电厂热电联合经济优化调度[J]. 太阳能学报, 2023, 44(9): 57-65.
Abstract
针对三北地区现有能源结构调节能力不足而导致的弃风问题,将风电场、光热电站、火电机组和热电联产机组聚合为虚拟电厂。采用随机优化处理风光不确定性问题,通过拉丁超立方抽样生成大量随机风光场景,并在充分考虑风光相关性和分布随机特性的基础上,利用Kantorovich距离削减与K-均值聚类算法对随机场景进行降维优化,获得风电、太阳直接辐照度典型预测场景。结合光热电站的灵活性与供能惯性,构建含光热虚拟电厂热电联合优化调度模型,并建立系统总运行成本最小的目标函数。最后在算例部分验证所提随机优化方法在计算效率、预测精度和处理风光随机问题的优越性;对不同运行模式下的目标函数进行求解,验证所提出的优化调度策略能够在满足系统运行经济性的同时实现风电的最大消纳。
LI Jiasen, WANG Jin, YANG Meng, et al. Combined heat and power economic optimal dispatching in virtual power plant based on stochastic optimization[J]. Acta Energiae Solaris Sinica, 2023, 44(9): 57-65.
Aiming at the problem of wind curtailment caused by the energy structure lacked the adjustment ability in the three north area, this paper aggregated wind farm, concentrating solar power plant(CSPP), thermal power units and combined heat and power(CHP) plant into virtual power plant(VPP). Using stochastic optimization to deal with the uncertainty of wind-solar, Latin hypercube sampling (LHS) was used to generated a large number of random scenes, and based on considering the random characteristics and correlation of wind-solar distribution fully,Kantorovich distance reduction and <em>K</em>-means clustering algorithm were used to optimized and reduced the dimension of random scenes, for obtaining typical prediction wind-solar scenes. Combined with the flexibility and energy supply inertia of CSPP, the optimal dispatching model of the VPP contained photothermal was constructed, and the objective function of minimizing the total operation cost of the system was established. Finally, an example was given to verify the superiority of the proposed stochastic optimization method in computational efficiency and prediction accuracy; The objective functions under different operation scenarios were solved to verify that the optimal dispatching model could improve the wind power consumption capacity while reducing the system operation cost effectively.
[36]
孙旭, 邱晓燕, 张志荣, 等. 基于数据驱动的交直流配电网分布鲁棒优化调度[J]. 电网技术, 2021, 45(12): 4768-4777.
SUN Xu, QIU Xiaoyan, ZHANG Zhirong, et al. Distributed robust optimal dispatching of AC/DC distribution network based on data driven mode[J]. Power System Technology, 2021, 45(12): 4768-4777.
[37]
马燕峰, 李鑫, 刘金山, 等. 考虑风电场时空相关性的多场景优化调度[J]. 电力自动化设备, 2020, 40(2): 55-61.
MA Yanfeng, LI Xin, LIU Jinshan, et al. Multi-scenario optimal dispatch considering temporal-spatial correlation of wind farms[J]. Electric Power Automation Equipment, 2020, 40(2): 55-61.
[38]
高海淑, 张玉敏, 吉兴全, 等. 基于场景聚类的主动配电网分布鲁棒综合优化[J]. 电力系统自动化, 2020, 44(21): 32-41.
GAO Haishu, ZHANG Yumin, JI Xingquan, et al. Scenario clustering based distributionally robust comprehensive optimization of active distribution network[J]. Automation of Electric Power Systems, 2020, 44(21): 32-41.
[39]
王志强, 方正, 刘文霞, 等. 基于概率多场景的柔性配电网鲁棒运行优化[J]. 电力自动化设备, 2019, 39(7): 37-44.
WANG Zhiqiang, FANG Zheng, LIU Wenxia, et al. Robust operation optimization of flexible distribution network based on probabilistic multi-scenario[J]. Electric Power Automation Equipment, 2019, 39(7): 37-44.
[40]
黄炜栋, 李杨, 李璟延, 等. 考虑可再生能源不确定性的风-光-储-蓄多时间尺度联合优化调度[J]. 电力自动化设备, 2023, 43(4): 91-98.
HUANG Weidong, LI Yang, LI Jingyan, et al. Multi-time scale joint optimal scheduling for wind-photovoltaic-electrochemical energy storage-pumped storage considering renewable energy uncertainty[J]. Electric Power Automation Equipment, 2023, 43(4): 91-98.
[41]
YANG J W, ZHANG N, KANG C Q, et al. A state-independent linear power flow model with accurate estimation of voltage magnitude[J]. IEEE Transactions on Power Systems, 2017, 32(5): 3607-3617.

Funding

Joint Funds of the National Natural Science Foundation of China(U23B20111)
PDF(2365 KB)

Accesses

Citation

Detail

Sections
Recommended

/