Day-Ahead Real-Time Optimal Scheduling Approach for Customer Directrix Load-Based Demand Response of Heavy-Duty Truck Battery Swapping Stations

LIU Zhanpeng, FAN Shuai, CAI Siye, SUN Ying, HUANG Renke, HE Guangyu

Electric Power Construction ›› 2025, Vol. 46 ›› Issue (6) : 106-120.

PDF(3843 KB)
PDF(3843 KB)
Electric Power Construction ›› 2025, Vol. 46 ›› Issue (6) : 106-120. DOI: 10.12204/j.issn.1000-7229.2025.06.009
Theory and Method of Demand-Side Flexible Resource State Perception and Intelligent Control for New-type Power System·Hosted by LIU Bo, LIAO Siyang, SUN Yingyun, ZHAO Bochao, JIANG Wenqian, ZHAO Ruifeng·

Day-Ahead Real-Time Optimal Scheduling Approach for Customer Directrix Load-Based Demand Response of Heavy-Duty Truck Battery Swapping Stations

Author information +
History +

Abstract

[Objective] A day-ahead, real-time optimal scheduling approach for customer directrix load (CDL)-based demand response is proposed to address the problem of the strong uncertainty of the battery swapping demand and inability to define the baseline load of heavy-duty truck battery swapping stations (HTBSSs), which makes it difficult to characterize their regulation contribution quantitatively and hinders flexibility. [Methods] First, an operation model is constructed based on the classification of the state of charge and considering the number of trucks waiting for switching, which solves the problems of an excessively large strategy space and the difficulty in describing the uncertainty faced by directly controlling the power of each battery. Second, a day-ahead optimization model is proposed for the participation of HTBSSs in CDL-based demand response based on the constructed model, and a real-time rolling optimization method is presented to deal with the uncertainty of the swapping demand. [Results] Examples show that the proposed model is applicable to different swapping demand scenarios, and that the day-ahead and real-time optimization approach can effectively track the CDL and reduce the number of swapping waits. After participating in the CDL-based demand response, the HTBSS and grid operator can reduce the cost by 47.66% and 65.52%, respectively, and the regional renewable energy power abandonment can be reduced by 90.93%. [Conclusions] The proposed method can effectively guide HTBSSs to participate in CDL-based demand response and alleviate the impact of uncertainty of the battery swapping demand in the operation process. The participation of HTBSSs in CDL-based demand response can not only promote the consumption of distributed renewable energy, but also reduce their own operating costs, resulting in a win-win situation for the grid and load.

Key words

heavy-duty trucks battery swapping station (HTBSS) / demand response / customer directrix load / consumption of renewable energy / optimal scheduling

Cite this article

Download Citations
LIU Zhanpeng , FAN Shuai , CAI Siye , et al . Day-Ahead Real-Time Optimal Scheduling Approach for Customer Directrix Load-Based Demand Response of Heavy-Duty Truck Battery Swapping Stations[J]. Electric Power Construction. 2025, 46(6): 106-120 https://doi.org/10.12204/j.issn.1000-7229.2025.06.009

References

[1]
中国电力企业联合会. 2024年一季度全国电力供需形势分析预测报告[R/OL]. (2024-04-24)[2024-07-09]. https://www.cec.org.cn/detail/index.html?3-332293.
[2]
国家发展改革委国家能源局关于新形势下配电网高质量发展的指导意见[EB/OL]. (2024-02-06)[2024-07-09]. https://www.gov.cn/zhengce/zhengceku/202403/content_6935790.htm.
[3]
郭毅娜, 廖凯, 杨健维, 等. 兼顾配电网韧性提升的电动汽车换电站容量优化配置方法[J]. 电网技术, 2025, 49(2): 470-480.
GUO Yina, LIAO Kai, YANG Jianwei, et al. Optimal capacity allocation method of battery swapping station considering distribution system resilience enhancement[J]. Power System Technology, 2025, 49(2): 470-480.
[4]
胡号, 胡志坚, 李天格, 等. 基于“车-桩-站”交互的充换电站一体化实时调度策略[J/OL]. 中国电机工程学报, 1-13. (2024-06-24)[2024-12-01]. http://kns.cnki.net/kcms/detail/11.2107.TM.20240621.1713.010.html.
HU Hao, HU Zhijian, LI Tiange, et al. Integrated real-time scheduling strategy of charging and switching station based on vehicle-pile-station interaction[J/OL]. Proceedings of the CSEE, 1-13. (2024-06-24)[2024-12-01]. http://kns.cnki.net/kcms/detail/11.2107.TM.20240621.1713.010.html.
[5]
陈浩, 熊萌, 杨洋. 电动重卡换电模式现状与发展趋势[J]. 时代汽车, 2024(7): 100-102.
CHEN Hao, XIONG Meng, YANG Yang. The status quo and development trend of electric heavy truck battery swap mode[J]. Auto Time, 2024(7): 100-102.
[6]
王利军, 梁承东, 李貌, 等. 电动重卡换电技术研究现状与发展[J]. 中国汽车, 2024, 34(4): 8-12.
WANG Lijun, LIANG Chengdong, LI Mao, et al. Research status and development of electric heavy truck changing technology[J]. China Auto, 2024, 34(4): 8-12.
[7]
王琼, 邹晴, 李乐, 等. 考虑用户动态充电需求的充电站选址定容优化[J]. 浙江电力, 2024, 43(9): 10-18.
WANG Qiong, ZOU Qing, LI Le, et al. Optimal siting and sizing of charging stations considering dynamic charging demands of users[J]. Zhejiang Electric Power, 2024, 43(9): 10-18.
[8]
宣羿, 樊立波, 孙智卿, 等. 考虑低碳交通的电动汽车充电站优化配置方法[J]. 浙江电力, 2024, 43(6): 69-79.
XUAN Yi, FAN Libo, SUN Zhiqing, et al. An optimal allocation method for electric vehicle charging stations considering lowcarbon transportation[J]. Zhejiang Electric Power, 2024, 43(6): 69-79.
[9]
TARAR M O, HASSAN N U, NAQVI I H, et al. Techno-economic framework for electric vehicle battery swapping stations[J]. IEEE Transactions on Transportation Electrification, 2023, 9(3): 4458-4473.
[10]
顾金辉. 电动重卡换电站规划与配置方法的研究[D]. 北京: 华北电力大学, 2023.
GU Jinhui. Research on planning and configuration method of electric heavy truck changing station[D]. Beijing: North China Electric Power University, 2023.
[11]
SONG C X, HUANG Y P, XU J J, et al. Optimal scheduling model of battery swapping station with virtual power plant mode[C]// 2024 IEEE 4th International Conference on Power, Electronics and Computer Applications (ICPECA). IEEE, 2024: 648-655.
[12]
赵显秋, 徐青山, 杨永标, 等. 考虑不确定性的新型电池充换电站多时间尺度能量管理策略[J]. 电网技术, 2025, 49(3): 1007-1017.
ZHAO Xianqiu, XU Qingshan, YANG Yongbiao, et al. Multi-time scale energy management strategy of novel battery charging and swapping station considering uncertainties[J]. Power System Technology, 2025, 49(3): 1007-1017.
[13]
李翼成, 赵钰婷, 崔杨, 等. 考虑充放电策略的换电站与风电-碳捕集虚拟电厂的低碳经济调度[J]. 电力自动化设备, 2023, 43(6): 27-36.
LI Yicheng, ZHAO Yuting, CUI Yang, et al. Low-carbon economic dispatching of battery swapping station and wind power-carbon capture virtual power plant considering charging and discharging strategy[J]. Electric Power Automation Equipment, 2023, 43(6): 27-36.
[14]
刘灵恺, 雷霞, 李竹, 等. 电动汽车换电站可用电池组数动态调度策略[J]. 电工技术学报, 2017, 32(22): 242-250.
LIU Lingkai, LEI Xia, LI Zhu, et al. Dynamic scheduling strategy for available battery number of electric vehicle in battery-swap station[J]. Transactions of China Electrotechnical Society, 2017, 32(22): 242-250.
[15]
沈筱琦, 方鑫, 谭林林, 等. 基于居民出行模拟的电动汽车负荷时空分布预测[J]. 电力工程技术, 2024, 43(3): 130-139.
SHEN Xiaoqi, FANG Xin, TAN Linlin, et al. Prediction of spatio-temporal distribution of electric vehicle load based on residential travel simulation[J]. Electric Power Engineering Technology, 2024, 43(3): 130-139.
[16]
范宏, 李嘉晖, 郭琦. 考虑用户充电决策行为的电动汽车充电引导策略[J]. 电力工程技术, 2023, 42(4): 23-30.
FAN Hong, LI Jiahui, GUO Qi. Electric vehicle charging guidance strategy considering user charging decision-making behavior[J]. Electric Power Engineering Technology, 2023, 42(4): 23-30.
[17]
崔景淏, 张怡, 张执超, 等. 路径规划下考虑电池损耗的纯电重卡集群充电负荷时空分布预测[J/OL]. 电力建设, 1-13. (2024-06-12) [2024-12-01]. http://kns.cnki.net/kcms/detail/11.2583.TM.20240611.1728.002.html.
CUI Jinghao, ZHANG Yi, ZHANG Zhichao, et al. Prediction of spatial-temporal distribution of charging loads in electric heavy truck clusters considering battery loss under path planning[J/OL]. Electric Power Construction, 1-13. (2024-06-12) [2024-12-01]. http://kns.cnki.net/kcms/detail/11.2583.TM.20240611.1728.002.html.
[18]
张齐东, 黄学良, 陈中, 等. 电动汽车电池更换站集群充电控制策略研究[J]. 电工技术学报, 2015, 30(12): 447-453.
ZHANG Qidong, HUANG Xueliang, CHEN Zhong, et al. Research on control strategy for the uniform charging of electric vehicle battery swapping station[J]. Transactions of China Electrotechnical Society, 2015, 30(12): 447-453.
[19]
程飞, 郭春林, 高泽阳, 等. 参与电网削峰调节的电动重卡换电站调度策略[J]. 电力系统自动化, 2024, 48(9): 120-128.
CHENG Fei, GUO Chunlin, GAO Zeyang, et al. Scheduling strategy of battery swapping stations for electric heavy-duty trucks participating in power grid peak-shaving regulation[J]. Automation of Electric Power Systems, 2024, 48(9): 120-128.
[20]
孟乡占, 米增强, 王吉兴, 等. 计及变速充电机制的含光伏换电站经济优化调度模型[J]. 浙江电力, 2022, 41(1): 35-41.
MENG Xiangzhan, MI Zengqiang, WANG Jixing, et al. An economic and optimal dispatch model for battery swapping stations containing photovoltaics considering variable-speed charging mechanism[J]. Zhejiang Electric Power, 2022, 41(1): 35-41.
[21]
黄敏丽, 于艾清. 基于改进布谷鸟算法的电动汽车换电站有序充电策略研究[J]. 中国电机工程学报, 2018, 38(4): 1075-1083, 1284.
HUANG Minli, YU Aiqing. Study on coordinated charging strategy for battery swapping station based on improved cuckoo search algorithm[J]. Proceedings of the CSEE, 2018, 38(4): 1075-1083, 1284.
[22]
NAYAK D S, MISRA S. An operational scheduling framework for electric vehicle battery swapping station under demand uncertainty[J]. Energy, 2024, 290: 130219.
[23]
刘达夫, 钟剑, 杨祺铭, 等. 基于V2G与应急通信的配电网信息物理协同快速恢复方法[J]. 电力系统自动化, 2024, 48(7): 147-158.
LIU Dafu, ZHONG Jian, YANG Qiming, et al. Fast recovery method for distribution network through cyber-physical collaboration based on vehicle to grid and emergency communication[J]. Automation of Electric Power Systems, 2024, 48(7): 147-158.
[24]
杨祺铭, 李更丰, 别朝红, 等. 台风灾害下基于V2G的城市配电网弹性提升策略[J]. 电力系统自动化, 2022, 46(12): 130-139.
YANG Qiming, LI Gengfeng, BIE Zhaohong, et al. Vehicle-to-grid based resilience promotion strategy for urban distribution network under typhoon disaster[J]. Automation of Electric Power Systems, 2022, 46(12): 130-139.
[25]
郝子霖, 于华楠, 冷贤达, 等. 基于电动汽车激励策略的主动配电网日前优化调度[J]. 电网与清洁能源, 2024, 40(11): 129-137.
HAO Zilin, YU Huanan, LENG Xianda, et al. The day-ahead optimization dispatch of active distribution networks based on electric vehicle incentive strategy[J]. Power System and Clean Energy, 2024, 40(11): 129-137.
[26]
周原冰, 龚乃玮, 王皓界, 等. 中国电动汽车发展及车网互动对新型储能配置的影响[J]. 中国电力, 2024, 57(10): 1-11.
ZHOU Yuanbing, GONG Naiwei, WANG Haojie, et al. Study on the influence of electric vehicle development and the vehicle-grid interaction on new energy storage configuration in China[J]. Electric Power, 2024, 57(10): 1-11.
[27]
骆钊, 聂灵峰, 田肖, 等. 结合车主期望的充换电站辅助调频策略[J]. 电力系统保护与控制, 2024, 52(13): 90-101.
LUO Zhao, NIE Lingfeng, TIAN Xiao, et al. Auxiliary frequency regulation strategy for charging and swapping stations combined with the expectations of vehicle owners[J]. Power System Protection and Control, 2024, 52(13): 90-101.
[28]
侯慧, 唐俊一, 王逸凡, 等. 价格与激励联合需求响应下电动汽车长时间尺度充放电调度[J]. 电力系统自动化, 2022, 46(15): 46-55.
HOU Hui, TANG Junyi, WANG Yifan, et al. Long-time-scale charging and discharging scheduling of electric vehicles under joint price and incentive demand response[J]. Automation of Electric Power Systems, 2022, 46(15): 46-55.
[29]
于昊正, 赵寒杰, 李科, 等. 计及需求响应的分布式光伏集群承载能力评估[J]. 电力建设, 2023, 44(2): 122-131.
Abstract
针对传统配电网分布式光伏承载能力评估方法中未考虑光伏集群的问题,构建了一种以光伏集群为评估单元的承载能力双层评估模型。模型外层通过价格弹性系数描述负荷需求变化,以售电商收益最大为目标优化分时电价,采用粒子群优化(particle swarm optimization,PSO)算法进行求解。内层以不往主网反送电作为指标,考虑电压偏差和设备热稳定约束,提出灵敏度排序方法求取光伏承载能力。在我国某县域实际配电网中求取了配电网光伏集群的承载能力,验证了所提模型和算法的有效性。
YU Haozheng, ZHAO Hanjie, LI Ke, et al. Carrying capacity evaluation of distribution network for distributed photovoltaic cluster considering user-side demand response[J]. Electric Power Construction, 2023, 44(2): 122-131.

Aiming at the problem that photovoltaic clusters are not considered in the traditional evaluation method of carrying capacity of distribution network for distributed photovoltaic power, a two-layer model of carrying capacity with photovoltaic clusters as the evaluation unit is constructed. In the outer layer of the model, PSO algorithm is used to describe the change of load demand through price elasticity coefficient, and the time-of-use price is optimized with the goal of maximizing the income of E-seller. In the inner layer, taking no reverse power transmission to the main network as the index, considering the voltage deviation and equipment thermal stability constraints, a sensitivity ranking method is proposed to calculate the carrying capacity for photovoltaic power. In the actual distribution network of a county in China, the impact of a single photovoltaic cluster on the carrying capacity of the distribution network is calculated, and the carrying capacity of the distribution network for the photovoltaic cluster is calculated to verify the effectiveness of the proposed model and algorithm.

[30]
范帅, 郏琨琪, 王芬, 等. 基于负荷准线的大规模需求响应[J]. 电力系统自动化, 2020, 44(15): 19-27.
FAN Shuai, JIA Kunqi, WANG Fen, et al. Large-scale demand response based on customer directrix load[J]. Automation of Electric Power Systems, 2020, 44(15): 19-27.
[31]
ZHANG Y, MENG Y, FAN S, et al. Multi-time scale customer directrix load-based demand response under renewable energy and customer uncertainties[J]. Applied Energy, 2025, 383: 125334.
[32]
ZENTANI A, ALMAKTOOF A, KAHN M T. A comprehensive review of developments in electric vehicles fast charging technology[J]. Applied Sciences, 2024, 14(11): 4728.
[33]
杨景旭, 唐渊, 姚蓝霓, 等. 考虑服务能力和削峰任务约束的换电站削峰方法[J]. 电力系统自动化, 2022, 46(15): 29-36.
YANG Jingxu, TANG Yuan, YAO Lanni, et al. Peak-shaving method for battery swap station considering service capacity and peak-shaving task constraints[J]. Automation of Electric Power Systems, 2022, 46(15): 29-36.
[34]
张颖, 容展鹏, 张宇雄, 等. 计及运营特性的电动汽车换电站时空双层调度[J]. 电网技术, 2016, 40(9): 2616-2623.
ZHANG Ying, RONG Zhanpeng, ZHANG Yuxiong, et al. Study on electric vehicle battery swapping station space-time double scheduling consider in it’s operating characteristics[J]. Power System Technology, 2016, 40(9): 2616-2623.
[35]
杨祺铭, 季陈林, 刘友波, 等. 多条公交线路的光储充电站日内滚动优化策略[J]. 智慧电力, 2020, 48(8): 44-50, 90.
YANG Qiming, JI Chenlin, LIU Youbo, et al. Day-rolling optimization strategy for photovoltaic-energy storage charging station with multiple electric bus lines[J]. Smart Power, 2020, 48(8): 44-50, 90.
[36]
孙海龙. 电动汽车换电站的能力规划与充电策略研究[D]. 广州: 华南理工大学, 2017.
SUN Hailong. Capacity planning and battery charging policy for electric vehicle battery swap station[D]. Guangzhou: South China University of Technology, 2017.
[37]
郭云鹏, 叶夏明, 赵俊华, 等. 电动汽车大型充换电站通信网络性能评估[J]. 电力建设, 2017, 38(1): 23-30.
Abstract
 电动汽车充换电站的自动化程度与其通信网络的性能密切相关,良好的网络性能是数据得以及时传输从而保障实现自动控制和管理功能的前提。因此大型充换电站通信网络中数据传输的特性以及网络性能值得深入研究。首先,对充换电站通信网络中的各类数据进行了详细的分析和建模;然后,针对网络中数据是否设置优先级的情况,利用OPNET软件进行了仿真并得出了一系列结论。计算结果表明,对各类数据设置不同的优先级有助于重要数据局的及时传输;传输较高码率视频数据的场合对网络带宽的要求更高,有可能需要另建通信网络来专门传输视频数据。  
GUO Yunpeng, YE Xiaming, ZHAO Junhua, et al. Performance analysis of communication networks in large-scale charging and swapping stations of electric vehicles[J]. Electric Power Construction, 2017, 38(1): 23-30.
&nbsp;The automation degree of charging and swapping station of electric vehicles is bounded up with the performance of its communication network. A well-performed communication network is the precondition of transmitting data in time and implementing the functions of automatic control and management. Therefore, the data transmission characteristics in the communication network of large-scale charging and swapping station and the communication performance are worthly studied. Firstly, this paper analyzes and models various data in communication network of charging and swapping station in detail. Then, aiming at the condition whether the data in the network sets priority, this paper carries out numerical simulations with using software OPNET and obtains a series of conclusion. The simulation results show that setting priority tags for different kinds of data is helpful for guaranteeing the reliable transmission of important data. Moreover, if the code rate of video monitoring data is high, a communication network with a broader bandwidth or even a proprietary network for these data only may be demanded.<div>&nbsp;</div>
[38]
张轶炫, 田志曈, 杨博超, 等. 考虑动态增容受限的光伏反向过载台区滚动优化策略研究[J]. 高电压技术, 2024, 50(12): 5563-5573.
ZHANG Yixuan, TIAN Zhitong, YANG Bochao, et al. Research on rolling optimization strategy considering the dynamic capacity increase limitation of photovoltaic reverse overload distribution areas[J]. High Voltage Engineering, 2024, 50(12): 5563-5573.
[39]
黄奇峰, 方凯杰, 黄艺璇, 等. 面向台区虚拟增容的需求侧资源多目标优化调度方法[J]. 供用电, 2023, 40(11): 61-68.
HUANG Qifeng, FANG Kaijie, HUANG Yixuan, et al. Multi-objective optimization scheduling method of demand side resources for virtual capacity expansion in substation area[J]. Distribution & Utilization, 2023, 40(11): 61-68.
[40]
陈艳波, 田昊欣, 刘宇翔, 等. 计及电动汽车需求响应的高速公路服务区光储充鲁棒优化配置[J]. 中国电机工程学报, 2025, 45(5): 1752-1767.
CHEN Yanbo, TIAN Haoxin, LIU Yuxiang, et al. Robust optimization configuration of photovoltaic-storage-charging integrated system in expressway service area considering demand response of electric vehicles[J]. Proceedings of the CSEE, 2025, 45(5): 1752-1767.
[41]
李进鑫, 张沛超, 赵建立, 等. 基于负荷准线的5G基站虚拟电厂优化控制方法[J]. 电网技术, 2024, 48(6): 2356-2365.
LI Jinxin, ZHANG Peichao, ZHAO Jianli, et al. Optimal control of 5G base station virtual power plant based on customer directrix load[J]. Power System Technology, 2024, 48(6): 2356-2365.

Funding

National Natural Science Foundation of China(52207123)
Shanghai Sailing Program(22YF1418900)
PDF(3843 KB)

Accesses

Citation

Detail

Sections
Recommended

/