PDF(8237 KB)
High-Voltage High-Capacity Active Filter Technology for High Voltage DC Converter Station
WANG Ling, MA Weimin, JI Yiming, LI Ming, WU Fangjie, XU Ying, DU Xiaolei, ZHANG Xiujuan
Electric Power Construction ›› 2025, Vol. 46 ›› Issue (6) : 121-133.
PDF(8237 KB)
PDF(8237 KB)
High-Voltage High-Capacity Active Filter Technology for High Voltage DC Converter Station
[Objective] High-voltage direct current transmission technology is a core technical method for optimizing resource allocation in China. Traditional high-voltage direct-current transmission technology has many drawbacks, such as a large footprint and easily changing AC system resonance. Development of active filter technology for high-voltage converter stations is crucial in high-voltage direct-current transmission projects for adapting to the changes in the grid structure brought about by large-scale new energy access. This technology would solve the inherent defects of traditional passive filters and enable adaptation to the fluctuations in the current AC power grid. [Methods] This study was conducted from the multiple aspects of topology structure, working principle, scheme design, and engineering applications. A coordinated control method of multiple active filters is proposed for high-voltage and large-capacity active filters along with a steady-state parameter design and control strategy scheme, and further verified through various simulation methods, fully demonstrating the harmonic filtering and reactive power compensation capabilities of high-voltage and large-capacity active filters and their ability to support reactive power in the system. [Results] The results indicate that high-voltage high-capacity active filters can enhance the adaptability of traditional DC to weak AC systems, improve harmonic characteristics, optimize the converter station layout, and effectively support the strength of AC systems. [Conclusions] The research and application of high-voltage and high-capacity active filters provide the necessary guidance for the design of DC transmission engineering systems in the context of future development of new power systems.
high-voltage active filter / ultra high voltage direct current transmission / commutation failure / reactive power compensation / harmonic compensation / transient compensation
| [1] |
王伟胜. 我国新能源消纳面临的挑战与思考[J]. 电力设备管理, 2021(1): 22-23.
|
| [2] |
周孝信, 陈树勇, 鲁宗相, 等. 能源转型中我国新一代电力系统的技术特征[J]. 中国电机工程学报, 2018, 38(7): 1893-1904, 2205.
|
| [3] |
|
| [4] |
杨兴武, 雷彪, 欧阳武, 等. 单相H桥级联型APF模型预测控制方法研究[J]. 电网技术, 2017, 41(3): 962-968.
|
| [5] |
|
| [6] |
|
| [7] |
邓佳, 李泽文. 有源电力滤波器研究现状综述[J]. 电工材料, 2023(5): 35-39.
|
| [8] |
李维臻. 一种新的基于瞬时无功功率理论的谐波电流检测算法[J]. 电气自动化, 2013, 35(5): 67-69.
|
| [9] |
王峰, 张旭隆, 曹言敬. 改进同步谐波检测法在有源电力滤波器中的应用[J]. 电气自动化, 2023, 45(4): 94-97.
|
| [10] |
叶宗彬, 侯波, 张延澳, 等. 一种三相对称系统快速谐波检测算法[J]. 电工技术学报, 2023, 38(2): 510-522.
|
| [11] |
苟家喜, 房占凯, 陈果, 等. 有源电力滤波器中基于M57962AL的IGBT驱动与保护设计[J]. 自动化与仪器仪表, 2023(6): 261-263.
|
| [12] |
张国澎, 周犹松, 郑征, 等. 有源电力滤波器指定次谐波补偿优化限流策略研究[J]. 电力系统保护与控制, 2018, 46(16): 46-53.
|
| [13] |
张俊敏, 田微. 基于瞬时无功功率理论谐波检测方法的研究[J]. 电力系统保护与控制, 2008, 36(18): 33-36.
|
| [14] |
周远翔, 陈健宁, 张灵, 等. “双碳” 与“新基建” 背景下特高压输电技术的发展机遇[J]. 高电压技术, 2021, 47(7): 2396-2408.
|
| [15] |
袁志昌, 郭佩乾, 刘国伟, 等. 新能源经柔性直流接入电网的控制与保护综述[J]. 高电压技术, 2020, 46(5): 1460-1475.
|
| [16] |
李建林, 赵栋利, 赵斌, 等. 载波相移SPWM级联H型变流器及其在有源电力滤波器中的应用[J]. 中国电机工程学报, 2006, 26(10): 109-113.
|
| [17] |
周泓宇, 姚伟, 李程昊, 等. 一种可降低首次换相失败风险的预测型低压限流控制[J]. 高电压技术, 2022, 48(8): 3179-3189.
|
| [18] |
张茂松, 池帮秀, 李家旺, 等. 有源电力滤波器基于准比例谐振的电流协调控制策略研究[J]. 电网技术, 2019, 43(5): 1614-1623.
|
| [19] |
|
| [20] |
李双健, 杜夏冰, 贾秀芳, 等. 一种应用于LCC高压直流输电的级联H桥混合型有源滤波器[J]. 电网技术, 2021, 45(4): 1409-1416.
|
| [21] |
马为民, 王玲, 李明, 等. 新型电力系统中的特高压直流输电SLCC换流技术[J]. 高电压技术, 2022, 48(12): 4941-4948.
|
| [22] |
浙江大学发电教研组直流输电科研组. 直流输电[M]. 北京: 水力电力工业出版社, 1985: 16-17.
|
| [23] |
陶瑜. 直流输电控制保护系统分析及应用[M]. 北京: 中国电力出版社, 2015: 75-79.
|
/
| 〈 |
|
〉 |